1) series simulating and prolonging method
模拟延长序列法
1.
Two new methods,series simulating and prolonging method(SSAP) and main frequency series reconstructing method(MFSR),are developed.
针对水文序列周期识别的困难,提出首先对原序列处理,再识别周期的新思路,同时提出两种新方法:一种是模拟延长序列法,即通过建模延长原序列,再应用最大熵谱分析法(MESA)对延长序列识别周期;另一种方法是构建主频序列法,应用小波重构法重构原序列主频部分,然后应用MESA对重构序列进行周期识别。
2) time series modelling
时间序列法模拟
3) simulative sequence
模拟序列
1.
To analyze the substance of improving forecasting precision of GM(1,1) based on linear function transformation,which is that the simulative sequence is changed from an exponential sequence to a non-homogenous exponential sequence,the fact that the improvement of smoothness is not the prerequisite to improve forecasting precision.
分析了基于一次函数变换的GM(1,1)模型提高预测精度的实质,即模拟序列从原有的纯指数序列变成了非齐次指数序列,并指出提高光滑度并不是提高预测精度的决定性条件,建立了模拟序列为非齐次指数序列的直接离散GM(1,1)模型。
5) Extended spread method
延长排列法
6) Datum extension
资料序列延长
补充资料:时间序列预测法
什么是时间序列预测法?
一种历史资料延伸预测,也称历史引伸预测法。是以时间数列所能反映的社会经济现象的发展过程和规律性,进行引伸外推,预测其发展趋势的方法。
时间序列,也叫时间数列、历史复数或动态数列。它是将某种统计指标的数值,按时间先后顺序排到所形成的数列。时间序列预测法就是通过编制和分析时间序列,根据时间序列所反映出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年内可能达到的水平。其内容包括:收集与整理某种社会现象的历史资料;对这些资料进行检查鉴别,排成数列;分析时间数列,从中寻找该社会现象随时间变化而变化的规律,得出一定的模式;以此模式去预测该社会现象将来的情况。
时间序列预测法的步骤
第一步收集历史资料,加以整理,编成时间序列,并根据时间序列绘成统计图。时间序列分析通常是把各种可能发生作用的因素进行分类,传统的分类方法是按各种因素的特点或影响效果分为四大类:(1)长期趋势;(2)季节变动;(3)循环变动;(4)不规则变动。
第二步分析时间序列。时间序列中的每一时期的数值都是由许许多多不同的因素同时发生作用后的综合结果。
第三步求时间序列的长期趋势(T)季节变动(s)和不规则变动(I)的值,并选定近似的数学模式来代表它们。对于数学模式中的诸未知参数,使用合适的技术方法求出其值。
第四步利用时间序列资料求出长期趋势、季节变动和不规则变动的数学模型后,就可以利用它来预测未来的长期趋势值T和季节变动值s,在可能的情况下预测不规则变动值I。然后用以下模式计算出未来的时间序列的预测值Y:
加法模式T+S+I=Y
乘法模式T%26times;S%26times;I=Y
如果不规则变动的预测值难以求得,就只求长期趋势和季节变动的预测值,以两者相乘之积或相加之和为时间序列的预测值。如果经济现象本身没有季节变动或不需预测分季分月的资料,则长期趋势的预测值就是时间序列的预测值,即T=Y。但要注意这个预测值只反映现象未来的发展趋势,即使很准确的趋势线在按时间顺序的观察方面所起的作用,本质上也只是一个平均数的作用,实际值将围绕着它上下波动。
时间序列预测法的分类
时间序列预测法可用于短期、中期和长期预测。根据对资料分析方法的不同,又可分为:简单序时平均数法、加权序时平均数法、移动平均法、加权移动平均法、趋势预测法、指数平滑法、季节性趋势预测法、市场寿命周期预测法等。
简单序时平均数法也称算术平均法。即把若干历史时期的统计数值作为观察值,求出算术平均数作为下期预测值。这种方法基于下列假设:%26ldquo;过去这样,今后也将这样%26rdquo;,把近期和远期数据等同化和平均化,因此只能适用于事物变化不大的趋势预测。如果事物呈现某种上升或下降的趋势,就不宜采用此法。
加权序时平均数法就是把各个时期的历史数据按近期和远期影响程度进行加权,求出平均值,作为下期预测值。
简单移动平均法就是相继移动计算若干时期的算术平均数作为下期预测值。
加权移动平均法即将简单移动平均数进行加权计算。在确定权数时,近期观察值的权数应该大些,远期观察值的权数应该小些。
上述几种方法虽然简便,能迅速求出预测值,但由于没有考虑整个社会经济发展的新动向和其他因素的影响,所以准确性较差。应根据新的情况,对预测结果作必要的修正。
指数平滑法即根据历史资料的上期实际数和预测值,用指数加权的办法进行预测。
一种历史资料延伸预测,也称历史引伸预测法。是以时间数列所能反映的社会经济现象的发展过程和规律性,进行引伸外推,预测其发展趋势的方法。
时间序列,也叫时间数列、历史复数或动态数列。它是将某种统计指标的数值,按时间先后顺序排到所形成的数列。时间序列预测法就是通过编制和分析时间序列,根据时间序列所反映出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年内可能达到的水平。其内容包括:收集与整理某种社会现象的历史资料;对这些资料进行检查鉴别,排成数列;分析时间数列,从中寻找该社会现象随时间变化而变化的规律,得出一定的模式;以此模式去预测该社会现象将来的情况。
时间序列预测法的步骤
第一步收集历史资料,加以整理,编成时间序列,并根据时间序列绘成统计图。时间序列分析通常是把各种可能发生作用的因素进行分类,传统的分类方法是按各种因素的特点或影响效果分为四大类:(1)长期趋势;(2)季节变动;(3)循环变动;(4)不规则变动。
第二步分析时间序列。时间序列中的每一时期的数值都是由许许多多不同的因素同时发生作用后的综合结果。
第三步求时间序列的长期趋势(T)季节变动(s)和不规则变动(I)的值,并选定近似的数学模式来代表它们。对于数学模式中的诸未知参数,使用合适的技术方法求出其值。
第四步利用时间序列资料求出长期趋势、季节变动和不规则变动的数学模型后,就可以利用它来预测未来的长期趋势值T和季节变动值s,在可能的情况下预测不规则变动值I。然后用以下模式计算出未来的时间序列的预测值Y:
加法模式T+S+I=Y
乘法模式T%26times;S%26times;I=Y
如果不规则变动的预测值难以求得,就只求长期趋势和季节变动的预测值,以两者相乘之积或相加之和为时间序列的预测值。如果经济现象本身没有季节变动或不需预测分季分月的资料,则长期趋势的预测值就是时间序列的预测值,即T=Y。但要注意这个预测值只反映现象未来的发展趋势,即使很准确的趋势线在按时间顺序的观察方面所起的作用,本质上也只是一个平均数的作用,实际值将围绕着它上下波动。
时间序列预测法的分类
时间序列预测法可用于短期、中期和长期预测。根据对资料分析方法的不同,又可分为:简单序时平均数法、加权序时平均数法、移动平均法、加权移动平均法、趋势预测法、指数平滑法、季节性趋势预测法、市场寿命周期预测法等。
简单序时平均数法也称算术平均法。即把若干历史时期的统计数值作为观察值,求出算术平均数作为下期预测值。这种方法基于下列假设:%26ldquo;过去这样,今后也将这样%26rdquo;,把近期和远期数据等同化和平均化,因此只能适用于事物变化不大的趋势预测。如果事物呈现某种上升或下降的趋势,就不宜采用此法。
加权序时平均数法就是把各个时期的历史数据按近期和远期影响程度进行加权,求出平均值,作为下期预测值。
简单移动平均法就是相继移动计算若干时期的算术平均数作为下期预测值。
加权移动平均法即将简单移动平均数进行加权计算。在确定权数时,近期观察值的权数应该大些,远期观察值的权数应该小些。
上述几种方法虽然简便,能迅速求出预测值,但由于没有考虑整个社会经济发展的新动向和其他因素的影响,所以准确性较差。应根据新的情况,对预测结果作必要的修正。
指数平滑法即根据历史资料的上期实际数和预测值,用指数加权的办法进行预测。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条