说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 球面扩散振幅补偿
1)  spherical spreading amplitude compensation
球面扩散振幅补偿
1.
By using VSP data,spherical spreading amplitude compensation factor was estimated.
通过分析VSP资料,求取球面扩散振幅补偿因子;对VSP走廊叠加剖面与地震资料进行匹配分析。
2)  amplitude compensation
振幅补偿
1.
Sensitivity analysis of AVO inversion in a case of multi-wave amplitude compensation in viscoelastic medium;
黏弹性介质多波振幅补偿情形下AVO反演的敏感性分析
2.
Based on analysis of seismic section features and seismic acquisition and processing in deep series of strata in Biyang depression, new technologies such as pre-stack surface wave and multiple suppression, shot point re-fix,surface consistent amplitude compensation and bin expansion are applied to re- process the initial 3-D seismic data in this area.
通过对泌阳凹陷深层系地震剖面特征及该区采集、处理情况分析,提出采用叠前压制面波、多次波的新方法,充分应用炮点重新定位、地表一致性振幅补偿、面元扩展等新技术,对该区三维原始资料进行连片再处理后,提高了深层资料信噪比。
3.
The poststack processing technique described in this paper consists of Lp modulo adaptive predictive statistical deconvolution, high-frequency content compensation, amplitude compensation and colour content correction.
本文介绍的叠后高分辨率资料处理流程主要包括Lp模自适应预测统计反褶积、高频成分补偿、振幅补偿及有色成分校正。
3)  spherical divergence compensation
球面发散补偿
4)  amplitude compensation method
振幅补偿法
5)  amplitude spectrum compensation
振幅谱补偿
6)  frequency-amplitude compensation
频率振幅补偿
1.
This paper introduces a frequency-amplitude compensation method which can improve the resolution of stacked seismic data and analyze its implication.
本文论述了提高迭后地震记录分辨率的频率振幅补偿方法原理及实际应用效果。
补充资料:球面与非球面的区别
球面与非球面的区别
所谓球面和非球面,主要是针对镜头(各种相继、显微镜等镜头)、眼镜(包括隐形眼镜)的镜片几何形状而言,即球面镜片与非球面镜片。二者在几何形状上的差别决定了它们在平行的入射光的折射方向上产生差异,从而影响其成像效果的好坏。
球面镜片,其镜片呈球面的弧度,其横切面亦呈弧状。当不同波长的光线,以平行光轴入射后镜片上不同的位置时,在菲林平面(与镜片中心和镜片焦点联机相垂直的、通过焦点的平面)上不能聚焦成一点,而形成像差的问题,影响影像的质素,例如出现清晰度下降和变形等现象。一般普通镜头是采用球面镜片组成的。
为解决这一成像问题,可以透过在镜身内增加镜片以作为对像差的矫正,但此举可能会引起反效果,进一步削弱影像质素,因为额外的镜片,除增加光线在镜身内反射的机会,引起耀光现象外,亦会增加镜头的体积和重量。
非球面镜片,其镜片并非呈球面的弧度,而是镜片边绿部份被「削」去少许,其横切面呈平面状。当光线入射到非球面镜面时,光线能够聚焦于一点,亦即菲林平面上,以消除各种象差。例如耀光现象在球面镜使用大光圈会比细光圈下拍摄来得严重,但若然加入非球面镜便可将耀光情况大大降低;又例如影像呈现变形(枕状或桶状),乃因镜头内的光线没有适当折射而产生,以变焦镜为例,短焦距时通常是桶状变形而变焦至长焦距时则为枕状变形,若采用非球面镜,则可以改善这方面的像差。
引用非球面镜技术,对生产大光圈、高倍数变焦、以至极端广角及远摄的镜头最为有利,影像质素因像差的减少而有所提高,镜身体积亦有缩小。现时市面有不少镜头生产商均表示旗下部份焦距的镜头采用了非球面镜片,以至轻便变焦相机(例如28至90mm、38至105mm等)都采用非球面镜设计,以提高影像质素。
非球面镜制作的难处在于它的几何尺寸的设计和几何尺寸的精密控制,目前这方面的技术日本最为先进。当前非球面镜的加工主要由两种方式:一类是采用高精密度研磨技术(手工或机械)对球面镜片进行再加工;一类是用高精度的模具进行压模或注塑方式直接制作非球面镜。
非球面光学零件塑料成型技术
光学塑料成型技术是当前制造塑料非球面光学零件的先进技术,它包括注射成型、铸造成型和压制成型等技术。光学塑料注射成型技术主要用来批量生产直径为100毫米以下的非球面透镜光学零件,也可制造微型透镜阵列。而铸造和压制成型技术主要用于制造直径为100毫米以上的非球面透镜光学零件。
塑料非球面光学零件由于具有重量轻、成本低,光学零件和安装部件可以注塑成为一个整体从而节省装配工作量,以及耐冲击性能好等优点,在军事、摄影、医学、工业等领域有着非常广阔的应用前景。例如,在美国AN/AVS-6型飞行员微光夜视眼镜中就采用了9块非球面塑料透镜。另外,在AN/PVS-7步兵微光夜视眼镜、HOT夜视眼镜、“铜斑蛇”激光制导炮弹导引头和其它光电制导导引头、激光测距机、军用望远镜以及各种照相机的取景器中也都采用了非球面塑料透镜。美国TBE公司在制造某种末制导自动导引头用非球面光学零件时,曾对几种光学塑料透镜成型技术做过经济分析对比,认为采用注射成型技术制造非球面塑料光学透镜费效比最佳。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条