1) resolvent set
豫解集
1.
First we prove that 0 is an eigenvalue of the operator with geometric multiplicity one,next we prove that all points on the imaginary axis except for zero belong to the resolvent set of the operator,last we prove that 0 is an eigenvalue of the adjoint operator of the operator.
首先证明0是对应于该排队模型的主算子的几何重数为1的特征值,其次证明在虚轴上除了0以外其他所有点都属于该算子的豫解集,然后证明0是该主算子共轭算子的特征值。
2.
First we consider the spectral properties of the operator corresponding to this system and obtain that all points on the imaginary axis except for zero belong to resolvent set of the operator, zero is an eigenvalue of the operator and its adjoint operator with geometric multiplicity one.
先讨论了对应于该系统的主算子的谱特征并且得到了在虚轴上除了0点外其它所有点都属于该主算子的豫解集,0是该主算子及其共轭算子几何重数为1的特征值。
3.
First we prove that all points on the imaginary axis except for zero belong to the resolvent set of the operator corresponding to the model, second prove that 0 is an eigenvalue of the operator and its adjoint operator with geometric multiplicity and algebraic multiplicity one,last by using theabove results we obtain that the time-dependent solution of the model str.
首先证明在虚轴上除了0以外其他所有点都属于该算子的豫解集,其次证明0是对应于该系统的主算子及其共轭算子的几何与代数重数为1的特征值,由此推出该系统的时间依赖解当时刻趋向于无穷时强收敛于系统的稳态解。
2) M-resolvent set
M-豫解集
1.
Using a selected invertible Lip-a operator M as the scale operator called the spectral scale, we introduce the M-resolvent set, M-spectrum, M-spectral radius, resolvent set, spectrum and spectral radius for a nonlinear Lipschitz-α operator between two Banach spaces.
本文运用一个选定的可逆Lip-α算子M作为尺度算子(称为谱尺度),引入两个Banach空间之间的非线性Lip-α算子的M-豫解集、M-谱集、M-谱半径、豫解集、谱集及谱半径,证明了它们的一列系重要性质,给出了M-谱的一个摄动定理,初步建立了Lip-α算子的M-谱理论,使得现有的谱理论成为其特例。
3) Yuzhang Anthology
豫章集
4) resolvent operator
豫解算子
5) resolvent
[英][ri'zɔlvənt] [美][rɪ'zɑlvənt]
豫解式
1.
On the analytic property of local resolvent;
关于局部豫解式的解析性
6) pseudo resolvent
伪豫解式
补充资料:凡事豫则立,不豫则废
1.谓做任何事情,事先谋虑准备就会成功,否则就要失败。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条