说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> u-fuzzy同态
1)  u-fuzzy Homomorphism
u-fuzzy同态
2)  L-fuzzy Homomorphism
L-fuzzy同态
1.
L-Fuzzy Homomorphism of L-Fuzzy Modules on L-Fuzzy Subrings;
L-fuzzy子环的L-fuzzy模的L-fuzzy同态
2.
The concepts of L-fuzzy homomorphism and L-fuzzy isomorphism of L-fuzzy submonoids are in-troduced and their characterizations are give.
给出了一种真正的L-fuzzy子幺半群间的L-fuzzy同态和L-fuzzy同构等概念。
3.
In this paper, It is proved that L-Fuzzy ideals in L-Fuzzy subrings under L-Fuzzy homomorphisms are still L-Fuzzy ideals in L-Fuzzy subrings.
证明了L-Fuzzy子环上的L-Fuzzy理想在一种真正的L-Fuzzy同态映射下的象和逆象仍是L-Fuzzy子环上的L-Fuzzy理想。
3)  Fuzzy homomorphism
Fuzzy同态
1.
The article studies the propertes of Fuzzy homomorphism in groups,the results are obtained that the image φ ′ λ(W) of a subgroup W is also a subgroup,and the image φ ′ λ(H) of a invariant subgroup H is also a invariant subgroup.
研究群的Fuzzy同态性质 ,获得了子群W的像 φ′λ(W )也是子群 ,不变子群H的像φ′λ(H)也是不变子群 ;构造了两个特殊不变子群L =△{ y∈G2 | x∈G1,φ(x ,y) =φ(x ,e2 ) } ,φ- 1(e2 ) =△{x∈G1|φ(x ,e2 ) =1 } ,获得不变子群的一个重要性质及Fuzzy同态基本定
2.
In this paper,the concept of fuzzy homomorphism of rings h as been introduced,and a theorem homomorphism concerning λ of rings a nd a fundamental theorem homomorphism of rings (having unit) have been establish ed.
在群的Fuzzy同态的基础上定义了环的Fuzzy同态 ,得到了环的依赖于λ的同态定理和有单位元环上的Fuzzy同态基本定理 ,并指出Fuzzy 子环 (理想 )在Fuzzy同态下亦为Fuzzy子环 (理想 ) 。
4)  U neat homomorphism
U-neat同态
5)  Fuzzy Rough Homomorphism
Fuzzy粗糙同态
1.
Fuzzy Rough Homomorphism and Isomorphism of Fuzzy Rough Semigroup;
Fuzzy粗糙半群的Fuzzy粗糙同态与同构
6)  fuzzy lattice modular homomorphism
Fuzzy格模同态
1.
By the set features of the probability of the fuzzy probability spaces and the correlative theory of fuzzy lattices, we obtain that the probability of the fuzzy probability spaces is a fuzzy lattice modular homomorphism from a fuzzy lattice to an interval, and decompose the probability into the product of a fuzzy lattice homomorphism and a fuzzy lattice modular homomorphism.
利用Fuzzy概率空间中的概率为集函数这一特征和Fuzzy格的相关理论,得到了Fuzzy概率空间中的概率是从一个Fuzzy格到某个区间的Fuzzy格模同态,并将概率分解成Fuzzy格同态与Fuzzy格模同态的乘积。
补充资料:Frobenius自同态


Frobenius自同态
Froberius endomorphism

I加饭对璐自同态〔Fm加对旧曰吐阅翔解白n;。,o6e,。yea翎八oMo帅.3M] q个元素的有限域乓上概形(scheme)X的自同态咖domo印城m)杯X一X,使得价限制在X(气)上是恒等映射,并且结构层的映射扩:今~今是自乘到q次幂的映射(即把t映到t“).Fro坎对留自同态是纯不可分态射·且具有零微分·对于定义在巩上的仿射簇XC才,F拍b目五出自同态毋把点(x,,…,凡)映到(川,,’‘,对). 定义在巩上的X的几何点的个数等于价的不动点的个数,因此,能够利用1刀台如血公式(此反址忱fo卜m血恤)来确定这些点的个数、义在只上的万履答,.se‘浏’夕翩集合,即“定
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条