1) weighted bloch space
加权Bloch空间
1.
The composition operators on weighted Bloch space in the unit ball of C~n;
C~n中单位球上加权Bloch空间上的复合算子
2.
In this paper,the boundedness of the composition operators between weighted bloch space and Q_K space is studied,with some corresponding conclusions reached.
讨论了加权Bloch空间(小加权Bloch空间)和Q_K空间的复合C_(?)的有界性,并给出了一些相应的结论。
2) weighted little Bloch space
加权小Bloch空间
1.
In this paper, the authors define the weighted little Bloch space B _ 0,log to be the set of all holomorphic functions f on the unit disc D for which lim | z |→1 -(1-| z | 2)(log11-| z| 2)|f′(z) |=0and they characterize the boundedness and compactness of the composition operators on B _ 0,log .
对加权小Bloch空间B0 ,log={ f∈H(D) ;lim|z|→ 1 (1- |z|2 ) (log 11- |z|2 ) |f′(z) |=0 } ,我们刻划了其上复合算子的有界性和紧性 。
5) Bloch space
Bloch空间
1.
The composition operators on weighted Bloch space in the unit ball of C~n;
C~n中单位球上加权Bloch空间上的复合算子
2.
Composition operators with closed range on the Bloch space;
Bloch空间上复合算子的闭值域
3.
On a Class of Subspaces of Bloch Space;
关于Bloch空间的一类子空间
6) α-Bloch spaces
α-Bloch空间
1.
We characterize the boundedness and compactness of the weighted compo- sition operator uC_φ between the logarithmic Bloch spaceβ_L and theα-Bloch spacesβ_αon the unit disk.
本文讨论了单位圆上对数Bloch空间β_L和α-Bloch空间β_α之间的加权复合算子uC_φ的有界性和紧性,主要得到以下结论:(i)uC_φ是空间β_L和β_α之间的有界算子或紧算子的充要条件;(ii)uCφ是空间β_L~0和β_α~0之间的有界算子或紧算子的充要条件。
2.
In this thesis, we investigate composition operators and multiplication operators betweenα-Bloch spaces, and weighted composition operators of H~∞intoα-Bloch spaces on the unit ball.
本文研究单位球上的α-Bloch空间之间的复合算子,乘积算子和H~∞到α-Bloch空间的加权复合算子。
3.
The first part is focus on theintegral characterization ofα-Bloch functions on the unit disc D, and givesa sufficient and necessary condition of a function analytic in D belongingto both Hardy spaces andα-Bloch spaces whenα≥1.
本文分为三个部分,第一部分研究了复平面上α-Bloch空间的积分特征,并用该特征给出了α≥1时,函数同时在α-Bloch空间和H~p中的充要条件。
补充资料:因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权
因侵害姓名权、肖像权、名誉权、荣誉权产生的索赔权:公民、法人的姓名权、名称权,名誉权、荣誉权、受到侵害的有权要求停止侵害,恢复名誉,消除影响,赔礼道歉,并可以要求赔偿损失。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条