1) Kolmogorov theorem
Kolmogorov定理
1.
This paper discusses the Kolmogorov theorem on the trajectory continuity of random process, through replacing the distance between two spots by the increment in rectangle, and we extend the Kolmogorov theorem in the multi-dimension case.
本文研究了随机过程轨道连续性的Kolmogorov定理。
2) the theorem of co-Ko-lmogorov characterization
共Kolmogorov特征定理
3) Kolmogorov strong law of large numbers
Kolmogorov强大数定律
1.
Two new methods of Kolmogorov strong law of large numbers were given in this paper to prove Kolmogorov inequality directly.
文章通过给出Kolmogorov强大数定律的另外两种证明方法,直接证明Kolmogorov不等式,再由它来证明强大数定律。
4) Kolmogorov entropy
Kolmogorov熵
1.
Kolmogorov entropy of space object RCS;
空间目标RCS序列的Kolmogorov熵分析
2.
Fault diagnosis research of rotor-case system based on Kolmogorov entropy;
基于Kolmogorov熵的转子—机匣系统故障诊断研究
3.
Research on stage features of sandstone specimens by Kolmogorov entropy method;
砂岩全应力应变试验曲线阶段特征的Kolmogorov熵分析
5) Komogorov-cntropy
Kolmogorov-熵
6) Kolmogorov test
Kolmogorov检验
补充资料:函数逼近,正定理和逆定理
函数逼近,正定理和逆定理
approximation of functions, direct and inverse theorems
函数逼近,正定理和逆定理〔叩p川心m丽皿of加n比拙,山比Ct and inve瑰the.陀ms;.聊痴叫的日.此中加.欲浦、娜旧M“el.倾阵I‘eT印碑袖I」 描述被逼近函数的差分微分性质与各种方法产生的逼近误差量(及其特征)之间关系的定理和不等式.正定理借助于函数f的光滑性质(具有给定的各阶导数,f或其某些导数的连续模等),给出f的逼近误差估计.利用多项式进行最佳逼近时,Jaekson型定理及其多种推广均是众所周知的正定理,见J以滋s佣不等式(J ackson inequality)和Ja改涨扣定理(Jackson theo-化m).逆定理则是根据最佳逼近或任何其他类型逼近的误差趋于零的速度来刻画函数的微分差分性质.5.N.Bernste几首次提出并在某些场合下解决了函数逼近中的逆定理问题,见[21,比较正逆定理,有时就可以利用,例如,最佳逼近序列来完全刻画具有某种光滑性质的函数类. 周期情形下正逆定理之间的关系最为明显.令C为整个实轴上周期为2二的连续函数空间,其范数定义为}}训:m。‘加川. 趁、 石(户7丁),nf}{厂甲1}、 价任了。为至多。次的允多项J处J’‘“间l对矛中函数f的最不}遍近,。仃一川记二厂的连续模,产r(产一12一)是若;,,I率个实轴上·次连续。f微的函数集‘户,二矛);卜定理f山。‘c、,the(〕re,1”J片出如果.了。厂、则 M{_‘l 从“,,蕊奋一“甲’、万 月l、2、、厂幼,!_.少川1常数M,。。一。又.「JJ以构造矛。‘;矛中函数八,)相关的多项式序列织(_人t):不使得对产三乙,(l)的右端.叮作为误差卜厂一仁〔户一的}界,这是较(I)更强的结果.1兰定理(,n、。r、。the‘)rem)指日:对,。矛勿J果 可。,、M了岁E“,;;),。、二 月二】(其,「,阿是绝对常数l}了司是l厂户的整数部分)日一对某个i「一整数r‘级数 艺。r一’E以讯一1) 月二1收敛.则可推得了‘〔’‘类似戈2)田(/、),l/。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条