说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 条件极值VaR
1)  conditional extreme value VaR
条件极值VaR
1.
Considering the factors of anticipation and volatility,to catch the character of return series in extreme condition and improve VaR precision,a model of conditional extreme value VaR is established.
在考虑当前预期和波动性条件下,为了有效地捕获极端条件下收益率时间序列动态特征,提高VaR的度量精度,建立了基于高频数据的条件极值VaR模型。
2)  condition VaR
条件VaR
1.
Calculate the condition VaR by extreme value theory and Copula function
基于极值理论和Copula函数的条件VaR计算
3)  conditional extremum
条件极值
1.
Proof of two inequalities by means of conditional extremum;
利用条件极值证明不等式
2.
One full condition of conditional extremum;
条件极值判定的一个充分条件
3.
Solution of conditional extremum of quadric form on hypersurface by using the matrix method
二次型在超曲面上条件极值的矩阵解法
4)  conditional extreme value
条件极值
1.
Li Wen-xue puts forward a sufficient condition of conditional extreme value with Lagrange Function,but his proof is wrong.
李文学用拉格朗日函数提出求条件极值的充分条件,但他的证明却是错误的。
2.
In the paper,the sufficient conditions for judging the conditional extreme value of multi-function are made out with Hissian matrix,and the mistakes in the literature [3] are pointed out.
文章利用Hissian矩阵,给出了判断多元函数条件极值的充分条件,并指出文献[3]中的错误。
3.
Wenxue Li put forward a sufficient condition of conditional extreme value with Lagrange function, but his proof is wrong.
李文学用拉格朗日函数提出求条件极值的充分条件,但他的证明却是错误的。
5)  extremum condition
极值条件
1.
Proof for the unconstrained extremum conditions;
无约束极值条件的一个证法
6)  conditional extreme
条件极值
1.
The conditional extreme of multivariable functions is an important content in《Mathematical Analysis》(partⅡ).
多元函数条件极值是教材《数学分析》(下册)课程中一个重要内容,教材通常采用拉格朗日数乘法求多元函数条件极值,而对于一些特殊问题可以利用柯西不等式简捷求出。
2.
Using the methods of evaluating conditional extreme value, the article proves two types of inequalities.
文章利用求条件极值的方法,证明了两类不等式,由此获得构造具体不等式的技巧,可以方便地构造出不等式的证明题。
补充资料:Weierstrass条件(对变分极值的)


Weierstrass条件(对变分极值的)
eierstrass conditions (for a variational extremun

与 ,(,)一丁:(:,、(:),、(。))过:, ,‘! L:R xR”xR”~R,在极值曲线x;、(t)上达到一个强局部极小值,其必要条件是不等式 、(r,x。(r),又。(r),亡))o对所有的t,t。蕊t毛t、和所有的省任C”都满足,其中‘·是Weierstrass澎函数(Weierstrass吕J一几mC-tion).这条件可借助于函数 n(t,x,p,u)=(p,u)一L(t,x,u)来表示(见n0HTp“「“H最大值原理(Pont月闷gm~-mum pnnciple)).Weierstrass条件(在极值曲线x。(t)上六)0)等价于函数n(r,x.,(t),尸。(r),u)当“=交.,(r)在u上达到极大值,其中夕。(t)=L、(t,x。,(t),又。(t)).这样,Weierstrass必要条件是floH-Tp。朋最大值原理的特殊情形. Weierstrass充分条件(Weierstrasss川币eientcon-山tion):为了泛函 叭 ,(,)一丁:(:,、(。),*(。))、。, r‘- L:R xR”xR”一,R在向量函数x.,(t)上达到一个强局部极小值,其充分条件是在曲线x。(t)的一个邻域G中存在一个向量值场斜率函数U(t,x)(测地斜率)(见H皿祀rt不变积分(Hilbert invariant integral)),使得 交。(t)=U(t,x。(t))和 产(t,x,U(t,x),七))0对所有(t,x)〔G和任何向量亡6R”成立.【补注]对在极值曲线的隅角的必要条件,亦见Wei-erstrass一Erd”.un隅角条件(W匕ierstrass一Erdrnanncomer conditions).weierstrass条件(对变分极值的)[Weierstrass cOI公i-tions(for a varia垃翻目翻drelll.ll:Be滋eP山TPaccayc-月OBH,,KcTpeMyMa」 经典变分法中对强极值的必要和(部分地)充分条件(见变分学(variational cakulus)).由K .We卜erstrass于1879年提出. 节几ierstrass必要条件(Weierstrass neeessary con-dition):为使泛函
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条