说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Padé紧致格式
1)  Padé compact difference scheme
Padé紧致格式
1.
In order to simulate complex geometries,both spectral method and Padé compact difference schemes were studied.
为了研究复杂几何形状,数值格式采用了谱方法和Padé紧致格式
2)  compact scheme
紧致格式
1.
Fourth-order compact scheme finite volume method for large eddy simulations of turbulent flows;
四阶紧致格式有限体积法湍流大涡模拟
2.
High-order compact scheme and its stability analysis for the pollutant diffusion equation;
污染扩散方程高精度紧致格式及其稳定性分析
3.
The filtered Navier-Stokes equation is solved numerically on non-staggered grids,with a finite volume fourth-order-accurate compact scheme for spatial discretization and fourth-order Runge-Kutta integration for time advancement.
该方法空间离散采用有限体四阶紧致格式,时间推进采用四阶Runge-Kutta法,压力-速度耦合应用四阶紧致格式的动量插值。
3)  compact difference scheme
紧致格式
4)  strongly compact scheme
强紧致格式
1.
This scheme has two-order accuracy in time,and combines weighted ENO scheme (r=3) and strongly compact scheme to treat convection term in N-S equation and the right terms of the discrete equation.
该格式在时间上具有二阶精度,在空间上将r=3的加权ENO格式与强紧致格式相结合去处理N-S方程中的对流项以及离散方程的右端项,并用四阶精度的紧致格式去计算N-S方程中的粘性项。
5)  compact implicit schemes
紧致隐格式
6)  compact explicit difference scheme
紧致显格式
1.
A highly accurate compact explicit difference scheme for solving the extended Boussinesq equations is presented.
采用一种高精度的紧致差分显格式对改进型Boussinesq方程进行数值求解;采用具有TVD性质的三阶Runge-Kutta方法进行预报,用三次样条函数进行校正,时间精度可达到四阶;在空间离散上采用六阶精度的三点紧致显格式进行计算;运用以上数值格式对Beji和Nadaoka改进型Boussinesq方程进行了求解,求解证明:高精度的数值结果和已知的试验结果吻合良好。
补充资料:Padé逼近


Padé逼近
Pate approximation

  幂级数的一种最佳有理逼近.设 f(:)二艺f*zk(l) k启0为任一(形式上的或收敛的)幂级数,n,m)0,为整数,R。t。是形如p/q的所有有理函数类,其中p与q是关于乞的多项式,魄q(川,吨p(。且q举0.级数(l)(函数f)的(n,m)型Pa由逼近(几叱appro刀rr‘nt)是函数类R,,,中与幂级数(l)在点艺二o有最大可能切触阶的有理函数兀。二〔R。。.更确切地说,函数二。,.由条件 。(f一二。,.)二max{a(f一r):r〔R。,}确定,其中,a(甲)是级数 甲一艺甲*:‘ k留0中第一个非零系数的下标. 也可以将函数二。.定义为满足条件 deg夕簇n,degq簇m, (叹f一p)(z)=A。,,z”+‘+’+…(2)的任意两个多项式p和q(q举0)的商p/q. 对于固定的n,m,幂级数(l)存在唯一的R玉de逼近叭.,·表毛7r。,。}筑,~。称作是级数(l)的Pa击奉(胁table).形如{“。,.}爪。的序列称作为耻表的行(rows of the Pad亡tabk)(零行恰好是f的Tavlor多项式序列);称{叭,。}二一。为几必表的列;而{7r,,J,。}界。则被称作P队记表的对角线.最重要的特殊情形j二O是P以记表的主对角线. 函数兀。二的计算归结为求解一个线性方程组,其系数可借助于给定幂级数的系数f*,k二0,…,”十m来表示.如果Han拙1矩阵(Hallkelrr心tr议) [了。_。十tf。_.十2…f.1 △__二]---一”一””! tf·f…“‘f一,」有非零的行列式,则函数二。,.的分母q。,,由下述公式给出 }二了。二:} 11八。,。乙l q。,Lz)=,获丁丁甲一一一丁l::{ det(△。.)}二_‘} 一”’…‘;篇,‘二zf”‘:…(规范化条件为q。,,(o)二1;也可写出函数二,,,的分子的显式表达式).并且 (f一究。,,)(:)=A。,.:”十’十’+.…有时用上述关系式来定义氏说逼近;但此种情形下的Pa成逼近对某个确定的(儿,m)不一定会存在.给定幂级数f的(n,m)型P以企逼近常用符号 「n/m】=[n/m】,记之. 为了有效地计算R记己逼近,不采用显式公式,而利用Pad亡表中存在的递推关系将更为方便.大量的算法已被建立用于Pa叱逼近的机器计算;这些问题在实际应用中具有特别重要的意义(见「川,【18」). A.L.Cauchy“1])首先研究了利用R。.。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条