1) bivariate joint distribution
两变量联合分布
1.
Annual maximum flood occurrence dates and magnitudes frequency analysis based on bivariate joint distribution;
年最大洪水两变量联合分布研究
2) multivariable joint distribution
多变量联合分布
3) bivariate probability distribution model
两变量概率分布模型
1.
Univariate frequency analysis cannot provide a complete description of hydrologic variables with multicharacteristics,and many hydrological frequency problems should be solved by the bivariate probability distribution model concerning the encounters and joint distributions of different hydrologic events.
总结了当前应用最广泛的几种两变量概率分布模型,对各种模型的适用性和局限性做了详细分析,并介绍了一种新的两变量概率模型——Copula函数。
4) joint distribution
联合分布
1.
The Gumbel-hougaard Copula function was used to analyze the joint distributions between annual maximum daily storm and seven-day storm amounts which are both with Pearson type III marginal distributions.
利用Gumbel-Hougaard Copula函数构建边缘分布均为PIII型分布的年最大日雨量与年最大七日雨量之间的联合分布。
2.
A bivariate joint distribution with Pearson Type III distribution margins is developed based on Gumbel-Hougaard Copula and used to describe two seasonal maximum flood series.
采用Gumbel-Hougaard Copula函数描述两个分期的分期最大洪水之间的相关性结构,并构造边缘分布为P-Ⅲ分布的分期最大洪水联合分布,建立分期最大洪水与年最大洪水的关系式,讨论分期设计洪水频率与防洪标准应满足的关系,探讨能够满足防洪标准的新的分期设计洪水模式。
3.
This paper proves joint distributions of multiple order statistics different from other documents;then studies distributions of single order statistic on the basis of joint distributions of multiple order statistics;finally systematically studies condional distributions of order statistics.
与其它文献研究顺序统计量的分布的方法不同,下文先用归纳法证明了多个顺序统计量的联合分布,接着又根据顺序统计量的联合分布研究了单个顺序统计量的分布,最后关于其条件分布也进行了系统的研究。
5) joint probability distribution
联合分布
1.
The Gumbel-Hougaard Copula was employed to construct a bivariate joint probability distribution for describing flood peak and flood volume,whose marginal distributions are both the Pearson type Ⅲ.
利用Gumbel-Hougaard Copula构造边缘分布为PⅢ型分布的两变量联合分布,用以描述洪峰和洪量。
2.
A joint probability distribution model of the tide level is established in the Wusongkou and the rainfall in the Taihu Lake area for calculating the probability of occurrence of the specified design tide level in Wusongkou,the design rainfall in Taihu Lake area and the corresponding rainfall in the reach.
分析了黄浦江水位的主要影响因子及其相关关系,建立了黄浦江吴松口潮位与太湖地区降雨量的联合分布模型,计算出不同频率的吴淞口设计水位与不同频率的太湖地区设计降雨量及相应的黄浦江区间降雨量相遭遇的概率,并采用水动力学模型结合外包方法确定出相应组合频率下的黄浦江设计水面线,为上海市远期设防标准的确定提供决策支持,并为论证吴淞口建闸的必要比提供科学依据。
3.
The period non-stationary probability and thejoint probability distribution for the system are aCquired.
获得了系统周期形式的非平稳概率分布及位移-速度联合分布。
6) Energy-angle joint distribution
能量-角度联合分布
补充资料:变量分布数列
变量分布数列
【变且分布数列I亦称“变量数列”。按数量标志分组形成的分布数列。按同一数量标志分组时可能会出现多种分配数列,其影响因素有组距与组数、组限与组中值。它主要有三种类型:钟形分布、U形分布、T形分布。【变且分布数列I亦称“变量数列”。按数量标志分组形成的分布数列。按同一数量标志分组时可能会出现多种分配数列,其影响因素有组距与组数、组限与组中值。它主要有三种类型:钟形分布、U形分布、T形分布。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条