说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 双连续n次积分C-半群
1)  Bi-continuous n-times integrated C-semigroup
双连续n次积分C-半群
1.
Exponentially bounded bi-continuous n-times integrated C-semigroups and properties;
指数有界双连续n次积分C-半群及其性质
2)  n-time integrated C-semigroup
n次积分C半群
1.
By means of the probabilistic estimation of convergence rate for C-semigroups and the properties of exponential bounded n-time integrated C-semigroups,some brief probabilistic approximations and convergent rates are obtained.
利用C半群收敛速度的概率型估计式,结合指数有界的n次积分C半群的性质,给出了n次积分C半群的概率型逼近式及收敛速度的估计式。
3)  n-times integrated C-semigroups
n次积分C半群
1.
n-times integrated C-semigroups and abstract cauchy problem;
n次积分C半群与抽象柯西问题的强解
2.
In this paper, we obtain several properties of n-times integrated C-semigroups and their proofs.
引入了主算子为n次积分C半群生成元的线性非齐次抽象柯西问题强解的概念,讨论了相应抽象柯西问题存在强解的一些充分必要条件及强解的表示式。
3.
The Laplace inverse transformation for n-times integrated C-semigroups is discussed.
讨论了n次积分C半群的Laplace逆变换形式,并通过限制预解式得到了n次积分C半群的渐近展开式。
4)  n-times integrated C-semigroups
n次积分C-半群
1.
The Approximation Theorems and Spectral Mapping Theorems for n-times Integrated C-semigroups;
n次积分C-半群的逼近定理和谱映照定理
2.
Convergence for exponentially bounded n-times integrated C-semigroups and approximation problem for a sequence of operators were discussed.
讨论了指数有界的n次积分C-半群的收敛性和算子列的逼近问题。
3.
In order to solve some abstract Cauchy problems,mathematicians created n-times integrated C-semigroups,then generalized n-times integrated semigroups and C-semigroups.
为了解决更多类型的抽象柯西问题,在半群理论中引入了n次积分C-半群,推广了n次积分半群和C-半群。
5)  local n-times integrated C-semigroups
局部n-次积分C半群
1.
The concepts and properties of local n-times integrated C-semigroups, generator, and subgenerator are introduced and its relations with C-wellposedness of an Abstract Cauchy Problem on a finite interval are investigated.
引入了局部n-次积分C半群、生成元、次生成元的概念及其性质,并讨论了它们在有限区间内与一类抽象柯西问题适定性之间的关系,得出闭线性算子A(次)生成局部n-次积分C半群等价于相应的(ACP)是C适定的。
6)  Integrated C-Semigroup Topology
n次积分C-半群拓扑
补充资料:强连续半群


强连续半群
strongly-continuous son!-group

强连续半群[s枷叼y一c佣“nu0lls,”‘.9代阅.;c翻‘即“enpep曰.Ha,no月yrPynna] Banach空间X上具有以下性质的一族有界线性算子T(t),r>0: l)T(t+;)x=T(r)T(:)x,r,了>0,x6X; 2)函数tl~T(t)x对任何x〔X在(O,的)上连续. 当1)成立时,所有函数tl一T(t)x(x‘X)的可测性,且特别地它们的单边(右或左)弱连续性,蕴涵T(t)的强连续性.对一个强连续半群,有限数 田一r叹r一’]n 11T(‘)1卜,纯‘一’In llT(r)11称为该半群的型(勿详of the semi一gouP).这样,函数t卜,T(t)x的范数在的的增长不快于指数e‘『.强连续半群的分类是基于当t,O时它们的性态.如果有一个有界算子J使得当t一,O时}T(t)一川},O,则J是一个投影算子且T(t)=Je‘月,其中A是与J交换的一个有界线性算子.在这情形T(t)关于算子范数是连续的.如果J=I,则T(t)=c‘滩,一的0,x〔X的并的闭包. 为了J存在且等于I,其必要充分条件为}T(t)}}在(O,1)上有界一且X。二X.在这情形下半群T(t)可以用等式T(0)=I扩张月.对t)0强连续(它满足C。条件(c。一condition)).对更宽的半群类极限关系T(t),I在广义下满足二 腼土 ,一、沙t;(ees如可和性,c,条件(e,一eo碱tion)),或 *l竖小一’·:(·)X“·-X,X6X 吸,(Abel可和性,A条件(A一condition)).这里假设函数l}T(t)xl},x〔x,在[o,1」可积(且因而在任何有限区间上可积). 强连续半群当t一卜0时的性态可以完全非正则的.例如,函数t~}T(O川}二o可以有幂奇性. 对x在X。中的一个稠密集函数tl~T(t)x在[0,的)上可微.使得函数t卜T(t)x对所有x对t>0是可微的强连续半群起着重要的作用.在这情形下算子T‘(t)对每个t有界且t~O时它的性态为半群分类给出了新的机会.使得T(t)在包含半轴(0,的)的复平面的扇形内有一个全纯扩张的强连续半群的类已经被刻画出. 见算子的半群(s绷一gro叩of。伴份tor);半群的生成算子(罗neratlngo详rator ofas明一妙up).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条