1) Lagrange multiplier theorem
Lagrange乘数定理
1.
Moreover,by using the Hahn-Banach separation theorem on product spaces,we give Lagrange multiplier theorems on Henig proper efficient solutions of vector optimization problems involving vector-valued maps and set-valued set maps with constraint.
进一步,利用关于积空间的Hahn-Banach分离定理,我们给出了具有限制向量值映照和集值映照的优化问题的Henig真有效解的Lagrange乘数定理。
3) ε-Lagrange multiplier theorem
ε-Lagrange乘子定理
1.
By using the alternative theorem,the ε-Lagrange multiplier theorems were derived.
通过在局部凸拓扑线性空间中引进集值映射向量优化问题的ε-超有效解,在集值映射为内部锥类凸的假设下,利用凸集分离定理建立了关于ε-超有效解的标量化定理,并利用择一定理得到ε-Lagrange乘子定理。
4) Lagrange multiplier method
Lagrange乘数法
1.
Several electricity problems are analyzed by use of Lagrange multiplier method, and some meaningful results are obtained.
利用Lagrange乘数法分析几个电学问题,得到了一些有意义的结果。
2.
The Lagrange multiplier method is derived from the view of geometry.
从几何上,直观地介绍求解一类条件极值问题的Lagrange乘数法,显得很形象、易于理解。
3.
The Lagrange multiplier method is one of the approaches for determining conditional extremum of function in Advanced Mathematics.
Lagrange乘数法是《高等数学》中求函数条件极值的一种方法。
5) Lagrange multipliers
Lagrange乘数法
1.
A explaination of λ in Lagrange multipliers;
Lagrange乘数法中λ的一种解释
2.
A learning algorithm of recurrent functional network is proposed,which adopted Lagrange multipliers as an auxiliary function and sums up the learning process of function parameters as solving a series of linear eguations.
提出一种递归泛函网络模型,给出递归泛函网络稳定性的一种判据,即把稳定点转化为某种函数的不动点;给出一般递归泛函网络学习算法,该算法是借助于Lagrange乘数法,作辅助函数对泛函参数学习过程归结为求一组线性方程组的过程;指出基于递度下降学习算法应用于递归泛函网络仅是一种特殊情形。
3.
This paper presented a new kind of functional network model which is based on orthogonal functions,a learning algorithm of orthogonal functional network was proposed,the learning of function parameters uses orthogonal function characteristic and Lagrange multipliers by means of auxiliary function and solving a system of linear equation obtains functions parameters.
该算法是借助于正交函数性质和Lagrange乘数法做辅助函数,对泛函参数学习过程归结为求解一组线性方程组的过程。
6) Lagrangian multiplier method
Lagrange乘数法
1.
In this paper,we use the Lagrangian multiplier method to obtain the least square estimate of the regression parameters on generalized linear model under the linear restriction.
利用Lagrange乘数法导出了广义线性模型在线性约束下的回归参数的最小二乘估计,并讨论了它的性质。
2.
In this paper, we use Lagrangian multiplier method to change the constrained extreme value of a class of (Multivariate) Symmetric Functions into unconclitioned extreme value of simple function, The method not only avoids solving the very difficult and complicated soultions of the system of the Fixed-point, but also simplities the solving of the problem.
巧用Lagrange乘数法,将一类多元对称函数的条件最值转化为一元函数的无条件最值,避免了具体求复杂而困难的驻点方程组的解,使问题化难为易。
补充资料:投资乘数与平衡预算乘数
前折指收入的变化与带来这种变化的投资支出的变化的比率
后者指政府收入和支出同时以相答数量增加或减少时国民收入变动对政府收支变动的比率。
后者指政府收入和支出同时以相答数量增加或减少时国民收入变动对政府收支变动的比率。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条