1) almost regularly strong semi-precontinuity
几乎正则强半准连续
1.
Meanwhile,we introduce the concept of almost regularly strong semi-precontinuity.
在L-fuzzy拓扑空间引进了正则强半准开集与正则强半准闭集的概念,研究了它们的性质,讨论了它们与已有的近似开集之间的关系,同时引入了几乎正则强半准连续等概念。
2) almost lower semicontinuous
几乎下半连续
1.
In this paper,on the base of the property for the selection of set-valued mapping,we introduce a relation of almost lower semicontinuous and continuous selection for metric projection in Banach space.
本文在集值映射选择的性质基础上,讨论了Banach空间下度量投影的几乎下半连续与连续选择的一个关系。
2.
We proved the set valued mapping is almost lower semicontinuous from the space made of bounded below function to the space made of the mapping that meets the conditions of Caristi fixed point theorem.
证明了从Caristi不动点定理中下半连续,下有界的泛函组成的空间到满足Caristi不动点定理条件的映射组成的空间的集值映射是几乎下半连续的。
3) almost semi-continuous
几乎半连续性
4) almost upper semi-continuous
几乎上半连续
5) almost continuous
几乎连续
1.
In this paper, δ-continuous and almost continuous Q\-1Q\-2-mapping are introduced, and continuous, δ-continuous, almost continuous are equivalence in the semiregular de Morgan topological algebra.
Q1Q2 -映射的连续性已在 [2 ]中讨论过 ,在本文中引进了 Q1Q2 -映射的δ -连续性 ,几乎连续性 ,并在半正则德摩根拓扑代数中证明了三种连续性的等价
补充资料:强连续半群
强连续半群
strongly-continuous son!-group
强连续半群[s枷叼y一c佣“nu0lls,”‘.9代阅.;c翻‘即“enpep曰.Ha,no月yrPynna] Banach空间X上具有以下性质的一族有界线性算子T(t),r>0: l)T(t+;)x=T(r)T(:)x,r,了>0,x6X; 2)函数tl~T(t)x对任何x〔X在(O,的)上连续. 当1)成立时,所有函数tl一T(t)x(x‘X)的可测性,且特别地它们的单边(右或左)弱连续性,蕴涵T(t)的强连续性.对一个强连续半群,有限数 田一r叹r一’]n 11T(‘)1卜,纯‘一’In llT(r)11称为该半群的型(勿详of the semi一gouP).这样,函数t卜,T(t)x的范数在的的增长不快于指数e‘『.强连续半群的分类是基于当t,O时它们的性态.如果有一个有界算子J使得当t一,O时}T(t)一川},O,则J是一个投影算子且T(t)=Je‘月,其中A是与J交换的一个有界线性算子.在这情形T(t)关于算子范数是连续的.如果J=I,则T(t)=c‘滩,一的
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条