说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 二元连续函数
1)  bivariate continuous function
二元连续函数
1.
For a kind of bivariate continuous function, the value of its variation is estimated.
讨论一类网格上二元连续分形插值曲面,研究二元连续函数的振幅与变差的性质。
2)  moduli of continuity for function of two variables
二元函数连续模
3)  multi-variant continuous functions
多元连续函数
1.
The computation and properties of the Box-dimension of multi-variant continuous functions are discussed in this paper.
文章主要讨论了利用函数变差来计算多元连续函数图像的Box维数及其性质。
4)  continuous functions
连续函数
1.
This paper considers some properties of continuous functions.
该文讨论了周期连续函数的若干性质,刻画了一些函数集合之间的包含关系。
2.
This article extends the zero-point theorem for continuous functions from a closed interval to other types of intervals,and a series of zero-point theorems for continuous functions on relevant intervals are obtained,so that the theory on the zero-point theorem can be applied in more general cases.
将闭区间上连续函数的零点定理扩展到其它区间上,得到若干个相应区间上连续函数的零点定理,从而使零点定理理论更完善、应用更广泛。
3.
In this paper,Stancu-integral type operators are first constructed on simplexes,then discusseions on approximation to continuous functions are made.
本文首先构造了单纯形上积分型 Stancu算子 ,其次讨论了它对连续函数的逼近 。
5)  continuous function
连续函数
1.
The inferences about the property for continuous function of closed interval and the mean value theorem for derivatives;
闭区间上连续函数的性质定理及微分中值定理的推论
2.
One quality of continuous function and its application in solving inequality equations;
连续函数的一个性质及其在解不等式中的应用
3.
Many ways have been given to solve the maximization problem of the continuous function, however, there are some drawbacks more or less.
求解连续函数最大值的优化算法已有多种,但都不同程度地存在一定的局限性。
6)  n-ary absolutely continuous function
n元绝对连续函数
1.
It defines n-ple derivative,n-ary absolutely continuous function,generalized n-ple primitive function and Newton n-ple integral.
定义了n重导数 ,n元绝对连续函数 ,广义n重原函数及牛顿n重积分 。
补充资料:半连续函数


半连续函数
semi-continuous function

  半连续函数l肥l企伽血以朋仙盆七叨;noJlyllenpep曰-阳a:中押刘”,」 定义在完全度量空间X上的扩充实值函数f,称为在点为沂x是下(上)半连续的(lo忱r(印per)s咖一cont~us),如果 粤j(‘))f(动〔瓦f(‘)‘f(“。)]函数.厂称为在X上是下(上)半连续的,如果它在X的每个点都是下(上)半连续的.单调增加(减少)的函数列,其中每个函数都在点x。是下(上)半连续的,那么它们的极限函数在x。仍是下(上)半连续的.若“和v分别为X上的下半连续和上半连续函数,且对所有的xeX,。(x)簇u(x),。(劝>一二,以劝<+田,那么存在X上连续函数f,使得对一切x任x,满足条件。(幻蕊f(x)镬“(x).设拼是R“上的非负正则Bo闭测度,则对任何召可测函数.f:R”一R,存在两个单调函数序列道。。}和{叭小满足如下条件:l)u。和。。分别是下半连续和上半连续的;2)每个u。是有下界的,而每个。。是有上界的;3){u。}是减少的序列而道。,}是增加序列;4)对一切x, “。(x)).f(义))v。(x);5) 。峡u。(‘)一。叭v。(‘)=f(x)拜几乎处处成立;6)若f在EC=R”上为拼可和,且.f‘L:(E,料),则u。,v。‘L,(E,拜)且 厄J二“。一厩J·。“;!一丁.厂‘。 石EE(Vitali.(、份t反油如ry定理(vilali一e汕川话习创了t恤”-化m)).【补注】下半连续与上半连续常缩写为!.s.c.与u.s.c二l,s.c与u.s.c.函数的概念也可以在拓扑空间X上定义.任何一个连续函数族的上(相应地,下)包络是1 .s.c.(u.s.c)的,且当X为完全正则时,其逆亦真;若X可度量化,上述结果对连续函数的可数族也成立.所以,度量空间X上的半连续函数必属于第一助i此类(Ba此ck比es).其逆不真. 设X=R,又设 r一1当二0,于是f属于第一Bai把类,但它既不是上半连续的也不是下半连续的.此外,},厂}是下半连续的,但 纸}f{(x)=l矜O一Ifl(0)·注意】f}(x)二lim。一、。(。x,)/(。x,+l)对一切x任R成立、所以lfl是连续函数的增加序列的逐点极限. 有关半连续函数的一个很有用的事实是D画-G玉川a幻引理(D而一Q由nlen卫刀a).设X为紧空间,(“,),,为一族1.s.c.函数、它具有如下的性质:对于I的任意有限子集J,存在i〔I使得suP,。J巧(“,.若。为u.s.c.函数使得。  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条