1) nonlinear hysteretic structure system
弹塑性滞迟非线性结构
2) hysteresis nonlinearity
迟滞非线性
1.
Then it is considered that there exists parametric uncertainty in the hysteresis nonlinearity in pitch.
首先将含有前/后缘双控制面二元机翼的动态方程以状态空间形式描述,然后考虑俯仰方向的迟滞非线性模型存在参数不确定性的情况下,利用Lyapunov稳定性理论进行了结构化模型参考自适应控制律设计。
2.
For a car including power train,engine cradle,car body,mass without spring and those substructures with linear and nonlinear joints,the scheme of component mode synthesis is employed to model dynamical systems of the car with hysteresis nonlinearity and rigid-elastic coupling.
将整车模型划分为多个子结构,包括动力总成子结构、副车架子结构、车身子结构、非簧载质量子结构及多个线性和非线性连接子结构等,采用含线性和非线性连接子结构的间接对接的自由界面模态综合法,建立整车迟滞非线性刚弹耦合系统动力学模型。
3.
The dynamical equation of a two-dimensional airfoil with polynomial hysteresis nonlinearity is built in an incompressible flow.
建立了不可压流动中多项式迟滞非线性二元机翼的气动弹性运动方程,然后利用谐波平衡法进行了求解。
3) hysteretic nonlinearity
迟滞非线性
1.
Identification of parameters for metal rubber isolator with hysteretic nonlinearity characteristics
具有迟滞非线性的金属橡胶隔振器参数识别研究
2.
After analyzing the hysteretic nonlinearity of materials with elastic and plastic deformation caused by oscillatory compaction,we establish a new nonlinear dynamic model for an oscillatory compaction system.
分析了振荡压实中材料发生弹塑性变形而表现出的迟滞非线性,建立了一种新的振荡压实非线性动力学模型。
4) hysteretic nonlinear
迟滞非线性
1.
However, due to its non-linearity and non-analysis, the parameter identification of hysteretic nonlinear system is very difficult, which damages it s offectireness in engineering.
工程中存在着大量的具有迟滞非线性恢复力的结构与构件,但迟滞非线性系统既是非线性的,又是非解析的,造成其参数识别十分困难,阻碍了迟滞非线性模型在工程中的应用。
5) non-linear hysteretic characteristic
非线性迟滞特性
1.
The test results show that the resilience of dissipater is influenced by frequency and amplitude and has obvious non-linear hysteretic characteristic.
采用电液伺服材料试验机的位移加载方式,对金属橡胶/橡胶复合叠层耗能器进行动态试验研究,结果表明:耗能器的恢复力同时受频率和振幅的影响具有非线性迟滞特性。
6) Elastic hysteresis
弹性迟滞
补充资料:半导体非线性光学材料
半导体非线性光学材料
semiconductor nonlinear optical materials
载流子传输非线性:载流子运动改变了内电场,从而导致材料折射率改变的二次非线性效应。④热致非线性:半导体材料热效应使半导体升温,导致禁带宽度变窄、吸收边红移和吸收系数变化而引起折射率变化的效应。此外,极性半导体材料大都具有很强的二次非线性极化率和较宽的红外透光波段,可以作为红外激光的倍频、电光和声光材料。 在量子阱或超晶格材料中,载流子的运动一维限制使之产生量子尺寸效应,使载流子能态分布量子化,并产生强烈的二维激子效应。该二维体系材料中激子束缚能可达体材料的4倍,因此在室温就能表现出与激子有关的光学非线性。此外,外加电场很容易引起量子能态的显著变化,从而产生如量子限制斯塔克效应等独特的光学非线性效应。特别是一些11一VI族半导体,如Znse/ZnS超晶格中激子束缚能非常高,与GaAs/AIGaAs等m一V族超晶格相比,其激子的光学非线性可以得到更广泛的应用。 半导体量子阱、超晶格器件具有耗能低、适用性强、集成度高和速度快等优点,以及系统性强和并行处理的特点。因此有希望制作成光电子技术中光电集成器件,如各种光调制器、光开关、相位调制器、光双稳器件及复合功能的激光器件和光探测器等。 种类半导体非线性光学材料主要有以下4种。 ①111一V族半导体块材料:GaAs、InP、Gasb等为窄禁带半导体,吸收边在近红外区。 ②n一巩族半导体量子阱超晶格材料:HgTe、CdTe等为窄禁带半导体,禁带宽度接近零;Znse、ZnS等为宽禁带半导体,吸收带边在蓝绿光波段。Znse/ZnS、ZnMnse/ZnS等为蓝绿光波段非线性光学材料。 ③111一V族半导体量子阱超晶格材料:有GaAs/AIGaAs、GalnAs/AllnAs、GalnAs/InP、GalnAs/GaAssb、GalnP/GaAs。根据两种材料能带排列情况,将超晶格分为I型(跨立型)、n型(破隙型)、llA型(错开型)3种。 现状和发展超晶格的概念是1969年日本科学家江崎玲放奈和华裔科学家朱兆祥提出的。其二维量子阱中基态自由激子的非线性吸收、非线性折射及有关的电场效应是目前非线性集成光学的重要元件。其制备工艺都采用先进的外延技术完成。如分子束外延(MBE)、金属有机化学气相沉积(MOCVD或MOVPE)、化学束外延(CBE)、金属有机分子束外延(MOMBD、气体源分子束外延(GSMBE)、原子层外延(ALE)等技术,能够满足高精度的组分和原子级厚度控制的要求,适合制作异质界面清晰的外延材料。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条