说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 微分包含系统转向控制
1)  vehicle steering control
微分包含系统转向控制
2)  differential inclusions
微分包含系统
1.
By Hamilton-Jacobi-Bellman inequalities method, the optimal control of a class of differential inclusions is cast as the problem of seeking upper and lower bounds on cost function.
根据Hamilton-Jacobi-Bellman(H-J-B)不等式,将一类微分包含系统的最优控制问题转化成最优控制性能上界的优化及性能下界的求取问题。
2.
In this paper, we study the existence of solution for nonautomous differential inclusions on closed set in Banach space, i.
本文在抽象Banach空间中研究非自治微分包含系统x(t)∈A(t,x);x(0)=x0在闭集上的生存性。
3)  piecewise linear differential inclusions
分段线性微分包含系统
1.
Optimal control of piecewise linear differential inclusions;
分段线性微分包含系统的最优控制设计
4)  steering control system
转向控制系统
1.
In order to improve the directional stability of remote-operated tracked vehicle,control methods for steering control system were studied.
为提高遥控履带车辆的操纵稳定性,研究了转向控制系统的控制方法。
2.
The paper discusses the intelligent control system of automobile based on neural networks, including the basic theory of closed circuit of neural driver & auto & road for steering control system, environment conditions and corresponding experimental results.
本文作者介绍了一种基于神经网络的汽车智能控制系统———神经驾驶员·车·路闭环转向控制系统的基本工作原理、硬件环境以及相关实验结果。
5)  steering control system of tracked vehicle
履带车辆转向控制系统
6)  four-wheel steering control system
四轮转向控制系统
补充资料:微分包含


微分包含
differential induskn

,/dx、、八 f!r,x厂竺舟})0: ,、一’dt广一’来自具有不连续右端的微分方程“l],第2章);以及来自最优控制理论(【3],【2])等.在控制问题中最常考虑的是方程 dx 二二竺二“f(t .x .u)、(2) dtJ、一””一”、一其中x=x(O是要求的向量函数,而u二“(t)是控制,即可在所有容许控制(详m理洛ible con往Dls)之中任意选择的向量函数(即对每个t,使得u(t)6U,其中U可以是依赖于t和x二x(t)的一个给定的集合).对所有容许控制“=u(t),方程(2)的解集满足微分包含(l),其中,F(:,x)是当u遍历集合U时,函数f(t,x,u)的所有值的集合. 在微分包含理论中,通常假定,对所考虑的区域G中的任意t,x,F(t,x)是n维空间中的非空有界闭集.如果集合F(t,x)是处处凸的,且对任意t,是x的上半连续函数(叩沐r货爪刀一contill田出丘mcd‘〕n)(即对任何t,x和任何。>O,对所有充分小的】x’一刘,集合F(t,x’)包含在集合F(t,x)的。邻域中),而对任意x,它是t的可测函数(即对刀维空间中的任意点x和任意球B,使F(t,x)门B是非空的t的值集,是玩b乏gUe可测的),并且,如果F(t,x)总是包含在一个球}xl(阴(t)中,而函数川(O是玫比g肥可积的,那么对任意的初始条件x(t。)=x。((t。,x。)任G),微分包含的解存在(【4]),且由这些解构成的积分管子(访雌刘丘mnel)显示出通常的性质(【41).如果F(t,x)关于x是连续的,则对集合F(t,x)是凸的要求可以去掉.解的存在性被保持(!5J).但积分管的性质未被保持. 介绍微分包含以及有关这类包含与控制问题之间的联系的著作见【6],汇71.关于微分包含的稳定性概念见「8],【lJ;关于有界与周期解的存在性以及其他性质见tl],f6],仁71.微分包含「山石比曰血lil.d理叙.;八呻中e脚二幼曰oeB彻份,e朋e],多值微分方程(multi绷习峨幻di价汗n石al叫ua-由n),具有多值右端的微分方程(山压翔即垃目闪班由n俪比功川桩一节习议过石沙t一性玫己s让七) 关系式 dx_一, 常“F(‘,‘),(,)其中,x=x(0是在某一区间上的未知向t函数,F(t,x)是依赖于数:及向量x=(x,,…,凡)的。维空间中的一个集合.微分包含(l)的解通常理解为一个绝对连续的向量函数x(O,它在所考虑的t的变化区间上几乎处处满足关系 兰丝业。F(t .x(t)). dt特别地,如果集合F(t,x)是由单个点组成的,则微分包含就变成常微分方程dx/dt二F(t,x).若Dx(t)‘F(t,x(t)),其中Dx(t)是一个切锥(con甸卿t)([l]),则这类方程在很多情况下等价于微分包含. 微分包含的产生,例如,来自涉及在所需的精度 …争一“!,·(!))卜名内满足微分方程的函数的问题;来自微分不等式
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条