1) Mean Square Error (MSE)
均方误差MSE
2) mean-square errors
最小均方误差(MSE)
3) mean-square-error criteria
均方误差(MSE)准则
4) mean square error
均方误差
1.
Firstly,screen the descriptors using support vector machine regression(SVR) by leave-one-out method based on the minimum mean square error(MSE),get the optimal kernel and the corresponding retained descriptors.
首先以均方误差(MSE)最小为原则,以留一法通过多轮末尾淘汰实施分子结构描述符的非线性SVR汰选并给出最优核函数和相应保留描述符;其次基于待测样本与训练样本保留描述符向量的欧氏距离,以不同k-近邻群子模型双重留一法预测值反映样本集的异质性;然后基于MSE最小,以留一法通过多轮末尾淘汰实施近邻群子模型的非线性SVR汰选并给出最优核函数和相应保留子模型;最后基于保留子模型以双重留一法实施组合预测。
2.
For the generalized linear model with aggregated data:Y=Xβ+u,Eu=0,Var(u)=σ2∑,this paper is built two kinds of biased estimators: ridge estimator β(k)and improved ridge estimator β(k)which are discussed some superiority to the estimators in the sense of mean square error.
在均方误差意义下,研究了它们的优良性,并将岭估计与改进岭估计进行了比较,推广了有关文献中的结果。
3.
As to seemingly unrelated regression system,a new biased contracting estimator of the parameters is put forward,which is the combination of generalized ridge covariance-improved estimator and Stein estimator,and the good features of this estimator in mean square error is discussed.
对于一类相依回归系统,结合广义岭型协方差改进估计与Ste in估计,提出了一种新的有偏压缩估计,,并讨论了该估计在均方误差下的优良性质。
5) mean square of error
误差均方
6) MSE
均方误差
1.
A Motion Estimation Algorithm Based on the Quantized DCT Coefficients MSE Criterion;
基于量化系数均方误差准则的运动估计算法
2.
For a class of seemingly unrelated regression system consisting of two equations,an improved estimation of principal components is proposed and the optimal properties are discussed in the sense of mean squared error(MSE).
针对两个相依方程组成的一类回归模型,提出回归系数的一种组合主成分改进估计方法,在均方误差意义下讨论了这种估计量的优良性质,研究了此估计与主成份改进估计的关系。
3.
Under the MSE criterion,some properties of the improved c-k estimators are given.
针对设计矩阵Xi呈病态时的半相依线性回归系统,提出了系统参数iβ的一种c-k型改进估计,并证明了这种估计在均方误差意义下的若干优良性质。
补充资料:均方根误差
分子式:
CAS号:
性质:又称均方根误差,当对某一量进行甚多次的测量时,取这一测量列真误差的均方根差(真误差平方的算术平均值再开方),称为标准偏差,以σ表示。σ反映了测量数据偏离真实值的程度,σ越小,表示测量精度越高,因此可用σ作为评定这一测量过程精度的标准。
CAS号:
性质:又称均方根误差,当对某一量进行甚多次的测量时,取这一测量列真误差的均方根差(真误差平方的算术平均值再开方),称为标准偏差,以σ表示。σ反映了测量数据偏离真实值的程度,σ越小,表示测量精度越高,因此可用σ作为评定这一测量过程精度的标准。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条