说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 对角优势矩阵
1)  diagonally dominant matrix
对角优势矩阵
2)  equidiagonal dominance matrix
等对角优势矩阵
1.
Iterative algorithms for calculating bounds of ∥A~(-1)∥_∞and the spectralradius of the Jacobi iterative matrix, judging H-matrix and M-matrix andproducing the optimally scaled matrix and equidiagonal dominance matrix arepresented in this paper.
本文对迭代判定H-矩阵、M-矩阵;最优尺度矩阵的迭代产生与(?)的计算;等对角优势矩阵的迭代产生与∥A~(-1)∥_∞的迭代估计等研究方向进行了深入的研究。
3)  generalized equidiagonal-dominant matrix
广义等对角优势矩阵
1.
In the paper, the concept of generalized equidiagonal-dominant matrix is introduced and a necessary and sufficient condition for a non-singular H-matrix is obtained.
提出了广义等对角优势矩阵的概念,得到了非奇H-矩阵的一个充分必要条件,并在此基础上对三角形矩阵‖A-1‖∞的上界进行了估计。
4)  diagonally equipollent matrix
对角均势矩阵
5)  generalized diagonal dominant matrix
广义对角优势阵
6)  diagonally dominant matrix
对角占优矩阵
1.
New properties of weakly generalized diagonally dominant matrix;
弱广义对角占优矩阵的新性质
2.
: The Paper discusses the diagonally dominant matrix .
研究了对角占优矩阵的性质,给出了此类矩阵奇异的一个充分条件和一个充分必要条件,同时给出了它的LU分解形式。
补充资料:对角优势矩阵
      一个n×n阶矩阵A=(αij),如果其每一行的非对角元的模之和都小于这一行的对角元的模,即
  ,就称A是严格对角优势或强对角优势的;若A仅满足,但至少有一个下标i =i0使
  成立,就称A是弱对角优势的。这类矩阵有着广泛的实际背景,如很多微分方程边值问题的离散化方程的系数矩阵往往具有上面的性质,因此对这类矩阵的研究是十分重要的。这类矩阵还有一些重要性质,例如,若矩阵A是严格对角优势或不可约弱对角优势的,则 A是非奇异的;若A还是埃尔米特矩阵,且对角元皆为正数,则A是正定的。又如用直接法或迭代法解系数矩阵为对角优势矩阵的线性代数方程组时,可以保证算法的稳定性或收敛性。
  
  

参考书目
   R.S.瓦格著,蒋尔雄等译:《矩阵迭代分析》,上海科学技术出版社,上海,1966。(R.S.Varga,Matrix Iterative Analysis,Prentice-Hall, Englewood Cliffs, New Jersey, 1962.)
   D.M.Young,Iterative Solution of large Linear Systems, Academic Press, New York, 1971.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条