说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 模板对准相乘法
1)  template-aimed multiplication
模板对准相乘法
1.
an algorithm-smooth template-aimed multiplication is put forward.
为了从灰度图像序列中精确提取出运动目标 ,提出了一种从灰度图像序列中提取运动目标的算法———平滑模板对准相乘法
2)  Standard object template
标准对象模板
3)  template correlative method
模板相关法
4)  3D relative datum method
三维相对基准法
5)  relative standand curve method
相对标准曲线法
6)  multiplicative object
乘法对象
补充资料:十字相乘法
Image:11738434436556449.jpg
十字相乘法

十字相乘法能把某些二次三项式ax2+bx+c(a≠0)分解因式。这种方法的关健是把二次项的系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项系数b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。

例:x2+2x-15

分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)

(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。

=(x-3)(x+5)

①x^2+(p q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么

kx^2+mx+n=(ax b)(cx d)

a \-----/b ac=k bd=n

c /-----\d ad+bc=m

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条