2) anti-lightning fire
防雷击火灾
3) air defence fire control radar
防空火控雷达
1.
First,the actual instance about combat of air defence fire control radar under the condition of complex electromagnetism circumstance is considered,and the uncertain factors which affect its combat capability are analyzed and disposed,then a step-up hierarchy on evaluation target system is built.
考虑了防空火控雷达在复杂电磁环境下作战的实际情况,通过对影响其作战能力不确定因素的分析和处理,建立了评估指标体系的递阶层次结构,并综合运用AHP法和灰色系统理论,建立了量化评估模型,通过实例计算表明了这种评估模型的针对性和有效性。
4) lightning protection
防雷
1.
Basic introduce of key points of lightning protection technology in oil depot and gas station;
简述石油库与加油站网络通讯系统的防雷技术要点
2.
Analysis for Lightning Protection Characteristic in Petrochemical Dangerous Site;
石油化工危险场所防雷特点的分析
3.
How to do well the lightning protection and grounding of distribution system;
如何做好配电系统的防雷与接地
5) anti-lightning
防雷
1.
Design in Anti-lightning system of the highway construction concrete mixing station;
公路施工混凝土搅拌站防雷系统的设计
2.
This paper introduces the designing for the safety of computer room and discusses the design method of power supply,grounding,anti-static and anti-lightning strike.
论述计算机机房电气设计中的安全问题,供电设计、防雷击、防静电以及接地的设计。
3.
Through analysis of lightning failures of North China Power Grid,we have known the important anti-lightning transmission lines and the important anti-lightning field of the transmission lines.
通过对华北电网公司直属单位近年来的雷击故障统计分析,掌握了防雷重点线路和线路的重点防雷区段。
6) lighting protection
防雷
1.
Variable and invariable of lighting protection techniques for buildings;
论建筑物防雷技术的发展
2.
Understanding impact grounding impedance, finishes grounding project of lighting protection;
认识冲击接地阻抗 做好防雷接地工程
3.
The grounding for lighting protection and running maintenance resolving planning of residential quarters weak current system
住宅区弱电系统防雷接地及运行维护解决方案
补充资料:木结构的防腐防虫和防火
保证木材耐久性的必要措施。
防腐 木材腐朽是受木腐菌侵害的结果。木腐菌体内的水解酶能将组成木材细胞壁的纤维素、木质素及细胞内含物分解作为养料,使木材的强度逐渐降低,直至失去全部承载能力。
木腐菌的生长必须同时具备下列三个条件:木材含水率高于18%;温度在 2~35°C的范围内;有氧气供应。如能去除其中之一,即可防止腐朽。中国有"千年不烂井底木"的古话,是说明木材在水中缺氧而不腐。木结构与人类生活分不开,温度和氧气无法排除,只能将木材含水率控制在18%以内,即使其处于干燥状态,防止木腐菌的侵蚀。因此,要求木结构各个部分,特别是支座节点等关键部位,要处于通风良好的条件下,即使一时受潮,也能及时风干。故在设计木结构时,首先要考虑结构的构造防腐措施:如设置隔温顶棚的木屋盖,必须将顶棚吊在木屋架下弦下面,并使下弦底面与隔温层保持一定距离,使整个屋架位于同一温度场内。如将隔温层置于木屋架下弦之上,则只好将屋架的支座节点砌在墙内,构成封闭的空间,以保证隔温层下面的正温度场的良好效果。但当屋檐稍有渗漏,就能浸湿支座节点,由于处于封闭状态,难以短期风干。木材只要在一定的时间内含水率高于18%,木腐菌就能生长,而木腐菌在繁殖过程中将要排出数倍于原来用以维持生长的水分,湿润毗邻的木材,产生恶性循环,使腐朽蔓延。过去不少木屋架的支座节点曾因此而严重腐朽毁坏,甚至引起整个屋盖的塌倒。
埋入土中的木电杆或木桩,在土层表面上、下一个区段内,被土中的水分侵湿,又有氧气供应,所以遭致腐朽。深埋于土中的部分不腐的原因是缺氧。地表以上较高部分不腐的原因是缺水(即含水率低于18%)。因此,对于经常受潮或间歇受潮的木结构或构件,以及不得不封闭在墙内的木梁端头或木砖等,都必须用防腐剂处理以防木腐菌繁殖生长。
防腐剂是由具有一定毒性的化学品配制的,分水溶性、油溶性、油类及浆膏等几种。对于经常受潮的木构件,宜采用属于油类防腐剂的混合防腐油,也称蒽油,由煤杂酚油(即木材防腐油)和煤焦油配制,遇水不易流失,药效较长。沥青在外观上呈黑色粘滞状,与蒽油类似,常被误用作防腐剂。但沥青只能防水而不能防腐,用沥青涂在未经干燥的木材上,则适得其反,阻碍了木材的风干。
不同的树种木材,由于细胞的内含物不同其耐腐性也有差别。马尾松、桦木等即属于耐腐性差的树种。对于同一树种的木材,边材较心材易腐,所以边材所占比率较大的树种,其耐腐性也较差。当采用这些树种的木材制作木结构时,均应用防腐剂处理。
防虫 蛀蚀木材的昆虫主要有白蚁和甲虫。白蚁的危害较甲虫广泛而严重。
白蚁是一种活动隐蔽,过群体生活的昆虫。在世界上共有2000多种,在中国也有近百种之多,主要分布于长江流域和南方温暖潮湿地区。白蚁以木材为主要食料,也离不开水分,且其生活有畏光性,到巢外取食,都在泥土筑成的蚁路中行进。故常在有木构件或木制品而靠近水源的地方筑巢。因此厨房、浴室等处阴暗潮湿部位的木构件最易受白蚁蛀蚀。
在中国常见的危害木材的甲虫是家天牛、家茸天牛、粉蠹和长蠹。天牛以木材的纤维为食,幼虫在木材内蛀成坑道,老熟后在坑道末端成蛹,成虫羽化后向外咬一椭圆形孔飞出。主要危害木麻黄等阔叶树材。粉蠹及长蠹以木材的淀粉和醣类为食,故以危害阔叶树材的边材为主。成虫喜在木材表面的管孔中产卵。因此管孔较大的栎木、山核桃、刺槐等树种受害最烈。幼虫将木材内部蛀成粉末状,只剩下一层薄薄的外壳,表面上小虫眼密布,其周围常有粉末状蛀屑。
甲虫主要侵害含水率较低的干燥木材,而白蚁对潮湿的木材为害较烈。所以采取构造上的防潮措施,使木构件与水源隔断,对减小白蚁的危害,有一定的效果。但构造上的防潮对防虫仅是一种辅助措施,凡是有白蚁或甲虫的地区,木结构和木制品均应用防虫药剂处理。
楠木、紫檀、柚木等树种有较强的抗白蚁性,杉木、柳杉、樟木等也有一定的抗白蚁性,但多数树种木材皆易受白蚁危害,如马尾松最易受白蚁蛀蚀。所以对于易受白蚁危害的树种木材制作的木结构或木制品,都要用防虫药剂处理。
为了保证木结构的耐久性,目前世界各国都采用既能防腐又能防虫的药剂。如用硼酸、硼砂和五氯酚钠配制的硼酚合剂,是一种水溶性的药剂,可将木构件浸泡在药剂的水溶液中,若每立方米木材能吸收4.5~6千克的药剂(干剂重量),则能达到防腐防虫的目的。由于这种药剂遇水容易流失,故只宜用于不受潮的木构件。对易受潮的木构件,则应采用油溶性的五氯酚、林丹合剂。
防火 对木结构及其构件的防火主要是测定其耐火极限,并根据建筑物耐火等级的要求,采取提高木构件耐火极限的措施。木构件的耐火极限,是指某种构件在专门的炉中,按模拟火灾温度(700~1000°C)的火焰进行燃烧,从开始到失去其原有的功能(对承重构件就是失去承载能力)的时间。如用厚度为 5厘米的方木胶合的门扇,其耐火极限为 1小时;截面为17×17厘米的木梁,其应力达到10兆帕,耐火极限为40分钟;截面为15×15厘米,高3.5米,应力达到4兆帕的木柱,25分钟后才破坏;而截面为29×29厘米的木柱,应力达6 兆帕,50分钟后才破坏。由此可见,木构件是具有一定的耐火性能,特别是截面较大的构件。这是因为木材是由中空的细胞组成,热导率较小。并且木材在燃烧过程中,在表面形成一层木炭,而木炭也有良好的隔热性能,因而减慢了木材的热分解。
木构件在火灾作用下,前2分钟是着火燃烧,在此后的8分钟内的炭化速率约为每分钟0.8毫米,由于形成木炭层,在这以后炭化速率减慢到每分钟0.6毫米。不同树种的炭化速率有一定的差别。木构件的耐火极限,除试验测定外,还可以根据已掌握的不同树种的炭化速率进行估算。
对于无保护层的木构件来说,应尽量采用截面尺寸较大的整体木构件,以提高耐火极限。试验证明,层板胶合构件的耐火性能与整体截面的木构件相似。所以采用截面大的层板胶合木结构,有利于防火。提高木结构的耐火极限有两个途径,一是加抹灰层或石膏板,如30×30厘米的木柱加2.5厘米的钢丝网抹灰层,其耐火极限可提高到1.5小时,另一是采用防火药剂浸注或涂防火漆,如丙烯酸乳胶防火漆,在100~200°C的温度下能分解出磷酸使木材脱水炭化,减少可燃气体的形成,在250°C左右能膨胀起泡,形成蜂窝状的防火隔热层,做到小火不燃,以防止初期火灾的扩展,一经离开火焰即能自行熄灭。
防腐 木材腐朽是受木腐菌侵害的结果。木腐菌体内的水解酶能将组成木材细胞壁的纤维素、木质素及细胞内含物分解作为养料,使木材的强度逐渐降低,直至失去全部承载能力。
木腐菌的生长必须同时具备下列三个条件:木材含水率高于18%;温度在 2~35°C的范围内;有氧气供应。如能去除其中之一,即可防止腐朽。中国有"千年不烂井底木"的古话,是说明木材在水中缺氧而不腐。木结构与人类生活分不开,温度和氧气无法排除,只能将木材含水率控制在18%以内,即使其处于干燥状态,防止木腐菌的侵蚀。因此,要求木结构各个部分,特别是支座节点等关键部位,要处于通风良好的条件下,即使一时受潮,也能及时风干。故在设计木结构时,首先要考虑结构的构造防腐措施:如设置隔温顶棚的木屋盖,必须将顶棚吊在木屋架下弦下面,并使下弦底面与隔温层保持一定距离,使整个屋架位于同一温度场内。如将隔温层置于木屋架下弦之上,则只好将屋架的支座节点砌在墙内,构成封闭的空间,以保证隔温层下面的正温度场的良好效果。但当屋檐稍有渗漏,就能浸湿支座节点,由于处于封闭状态,难以短期风干。木材只要在一定的时间内含水率高于18%,木腐菌就能生长,而木腐菌在繁殖过程中将要排出数倍于原来用以维持生长的水分,湿润毗邻的木材,产生恶性循环,使腐朽蔓延。过去不少木屋架的支座节点曾因此而严重腐朽毁坏,甚至引起整个屋盖的塌倒。
埋入土中的木电杆或木桩,在土层表面上、下一个区段内,被土中的水分侵湿,又有氧气供应,所以遭致腐朽。深埋于土中的部分不腐的原因是缺氧。地表以上较高部分不腐的原因是缺水(即含水率低于18%)。因此,对于经常受潮或间歇受潮的木结构或构件,以及不得不封闭在墙内的木梁端头或木砖等,都必须用防腐剂处理以防木腐菌繁殖生长。
防腐剂是由具有一定毒性的化学品配制的,分水溶性、油溶性、油类及浆膏等几种。对于经常受潮的木构件,宜采用属于油类防腐剂的混合防腐油,也称蒽油,由煤杂酚油(即木材防腐油)和煤焦油配制,遇水不易流失,药效较长。沥青在外观上呈黑色粘滞状,与蒽油类似,常被误用作防腐剂。但沥青只能防水而不能防腐,用沥青涂在未经干燥的木材上,则适得其反,阻碍了木材的风干。
不同的树种木材,由于细胞的内含物不同其耐腐性也有差别。马尾松、桦木等即属于耐腐性差的树种。对于同一树种的木材,边材较心材易腐,所以边材所占比率较大的树种,其耐腐性也较差。当采用这些树种的木材制作木结构时,均应用防腐剂处理。
防虫 蛀蚀木材的昆虫主要有白蚁和甲虫。白蚁的危害较甲虫广泛而严重。
白蚁是一种活动隐蔽,过群体生活的昆虫。在世界上共有2000多种,在中国也有近百种之多,主要分布于长江流域和南方温暖潮湿地区。白蚁以木材为主要食料,也离不开水分,且其生活有畏光性,到巢外取食,都在泥土筑成的蚁路中行进。故常在有木构件或木制品而靠近水源的地方筑巢。因此厨房、浴室等处阴暗潮湿部位的木构件最易受白蚁蛀蚀。
在中国常见的危害木材的甲虫是家天牛、家茸天牛、粉蠹和长蠹。天牛以木材的纤维为食,幼虫在木材内蛀成坑道,老熟后在坑道末端成蛹,成虫羽化后向外咬一椭圆形孔飞出。主要危害木麻黄等阔叶树材。粉蠹及长蠹以木材的淀粉和醣类为食,故以危害阔叶树材的边材为主。成虫喜在木材表面的管孔中产卵。因此管孔较大的栎木、山核桃、刺槐等树种受害最烈。幼虫将木材内部蛀成粉末状,只剩下一层薄薄的外壳,表面上小虫眼密布,其周围常有粉末状蛀屑。
甲虫主要侵害含水率较低的干燥木材,而白蚁对潮湿的木材为害较烈。所以采取构造上的防潮措施,使木构件与水源隔断,对减小白蚁的危害,有一定的效果。但构造上的防潮对防虫仅是一种辅助措施,凡是有白蚁或甲虫的地区,木结构和木制品均应用防虫药剂处理。
楠木、紫檀、柚木等树种有较强的抗白蚁性,杉木、柳杉、樟木等也有一定的抗白蚁性,但多数树种木材皆易受白蚁危害,如马尾松最易受白蚁蛀蚀。所以对于易受白蚁危害的树种木材制作的木结构或木制品,都要用防虫药剂处理。
为了保证木结构的耐久性,目前世界各国都采用既能防腐又能防虫的药剂。如用硼酸、硼砂和五氯酚钠配制的硼酚合剂,是一种水溶性的药剂,可将木构件浸泡在药剂的水溶液中,若每立方米木材能吸收4.5~6千克的药剂(干剂重量),则能达到防腐防虫的目的。由于这种药剂遇水容易流失,故只宜用于不受潮的木构件。对易受潮的木构件,则应采用油溶性的五氯酚、林丹合剂。
防火 对木结构及其构件的防火主要是测定其耐火极限,并根据建筑物耐火等级的要求,采取提高木构件耐火极限的措施。木构件的耐火极限,是指某种构件在专门的炉中,按模拟火灾温度(700~1000°C)的火焰进行燃烧,从开始到失去其原有的功能(对承重构件就是失去承载能力)的时间。如用厚度为 5厘米的方木胶合的门扇,其耐火极限为 1小时;截面为17×17厘米的木梁,其应力达到10兆帕,耐火极限为40分钟;截面为15×15厘米,高3.5米,应力达到4兆帕的木柱,25分钟后才破坏;而截面为29×29厘米的木柱,应力达6 兆帕,50分钟后才破坏。由此可见,木构件是具有一定的耐火性能,特别是截面较大的构件。这是因为木材是由中空的细胞组成,热导率较小。并且木材在燃烧过程中,在表面形成一层木炭,而木炭也有良好的隔热性能,因而减慢了木材的热分解。
木构件在火灾作用下,前2分钟是着火燃烧,在此后的8分钟内的炭化速率约为每分钟0.8毫米,由于形成木炭层,在这以后炭化速率减慢到每分钟0.6毫米。不同树种的炭化速率有一定的差别。木构件的耐火极限,除试验测定外,还可以根据已掌握的不同树种的炭化速率进行估算。
对于无保护层的木构件来说,应尽量采用截面尺寸较大的整体木构件,以提高耐火极限。试验证明,层板胶合构件的耐火性能与整体截面的木构件相似。所以采用截面大的层板胶合木结构,有利于防火。提高木结构的耐火极限有两个途径,一是加抹灰层或石膏板,如30×30厘米的木柱加2.5厘米的钢丝网抹灰层,其耐火极限可提高到1.5小时,另一是采用防火药剂浸注或涂防火漆,如丙烯酸乳胶防火漆,在100~200°C的温度下能分解出磷酸使木材脱水炭化,减少可燃气体的形成,在250°C左右能膨胀起泡,形成蜂窝状的防火隔热层,做到小火不燃,以防止初期火灾的扩展,一经离开火焰即能自行熄灭。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条