1) lateral inhibitory neural network
侧抑制神经网络
2) lateral inhibition network
侧抑制网络
1.
Based on the equipment characteristics of the Airborne EO TV targeting pod,theory of the lateral inhibition network is introduced,a method of infrared image pre-processing method based on circular lateral inhibition network is proposed.
针对作战飞机光电电视瞄准吊舱系统的设备特点,从理论上介绍了侧抑制网络,提出一种基于循环侧抑制网络的图像预处理方法。
3) neural network/sid elobe suppressi
神经网络/旁瓣抑制
4) shunting inhibitory cellular neural networks
分流抑制细胞神经网络
1.
By using the Banach fixed point theory and constructing the Lyapunov functional,the existence and global attractivity of almost periodic solutions for shunting inhibitory cellular neural networks with distributed delays are studied under more general conditions.
利用Banach不动点理论和Lyapunov函数方法,在较一般条件下研究了具有分布时滞的分流抑制细胞神经网络概周期解的存在性和全局吸引性,给出了新的判据,推广了已知文献的一些结果且易于在实际工程领域中验证。
2.
Some related results for the shunting inhibitory cellular neural networks are improved.
利用一些分析技巧,讨论了一类时滞动力系统解的指数收敛行为,证明了此类时滞动力系统的所有解都指数收敛到零点,改进了已有的关于分流抑制细胞神经网络的相关结论。
5) Shunting inhibitory cellular neural networks (SICNNs)
分路抑制神经网络(SICNNs)
6) cyclic lateral inhibition network
循环侧抑制网络
1.
FPGA implementation of infrared image preprocessing with cyclic lateral inhibition network;
循环侧抑制网络的红外图像预处理FPGA实现研究
补充资料:侧抑制
相近的神经元彼此之间发生的抑制作用,即在某个神经元受到刺激而产生兴奋时,再刺激相近的神经元,则后者所发生的兴奋对前者产生的抑制作用。
1868年E.马赫发现马赫带效应,并提出了有关视网膜神经元相互作用的理论。1932年H.K.哈特兰和C.H.格雷厄姆在鲎眼(含有近1000个小眼的复合眼)上,用微电极记录了单根神经纤维的脉冲。当光照鲎眼上的一个小眼A而引起兴奋时,再用光照射邻近的小眼B,小眼A的脉冲发放频率就下降(见图)。这是由于小眼B的兴奋抑制了邻近的小眼A的兴奋,同样情形,刺激小眼A也会抑制小眼B的兴奋。
侧抑制作用的大小依赖于两小眼之间的空间距离:当间距加大时,抑制作用便减弱,同时,只有当邻近小眼B的兴奋水平达到一定值时,才可能对小眼A产生侧抑制作用;而且这种作用会随着小眼B受到刺激的强度增大而加强;受照的邻近小眼数增多,它们所产生的抑制作用也增强。另外,当小眼B对小眼A产生抑制作用时,再光照另一个小眼C(小眼C远离A而邻近B),则小眼B对小眼A的抑制便减弱了,这叫做去抑制现象。
侧抑制作用在许多动物的视觉系统里都能表现出来。例如,在昆虫的视网膜第一级单极神经元上,在脊椎动物视网膜的双极细胞上,在神经节细胞的感受野里,在外侧膝状体以及视皮层细胞中都能产生侧抑制。侧抑制有利于视觉从背景中分出对象,尤其在看物体的边角和轮廓时会提高视敏度,使对比的差异增强。在色觉方面,由于具有不同光谱感受性的神经元之间的相互抑制作用,可能形成颜色的拮抗效应(红和绿,黄和蓝的成对拮抗效应)。在其他感觉系统里,侧抑制也发生作用。例如,在听觉系统中,耳蜗神经纤维的侧抑制可以加强对音高的辨认。在皮肤上,侧抑制有助于触点的定位。
1868年E.马赫发现马赫带效应,并提出了有关视网膜神经元相互作用的理论。1932年H.K.哈特兰和C.H.格雷厄姆在鲎眼(含有近1000个小眼的复合眼)上,用微电极记录了单根神经纤维的脉冲。当光照鲎眼上的一个小眼A而引起兴奋时,再用光照射邻近的小眼B,小眼A的脉冲发放频率就下降(见图)。这是由于小眼B的兴奋抑制了邻近的小眼A的兴奋,同样情形,刺激小眼A也会抑制小眼B的兴奋。
侧抑制作用的大小依赖于两小眼之间的空间距离:当间距加大时,抑制作用便减弱,同时,只有当邻近小眼B的兴奋水平达到一定值时,才可能对小眼A产生侧抑制作用;而且这种作用会随着小眼B受到刺激的强度增大而加强;受照的邻近小眼数增多,它们所产生的抑制作用也增强。另外,当小眼B对小眼A产生抑制作用时,再光照另一个小眼C(小眼C远离A而邻近B),则小眼B对小眼A的抑制便减弱了,这叫做去抑制现象。
侧抑制作用在许多动物的视觉系统里都能表现出来。例如,在昆虫的视网膜第一级单极神经元上,在脊椎动物视网膜的双极细胞上,在神经节细胞的感受野里,在外侧膝状体以及视皮层细胞中都能产生侧抑制。侧抑制有利于视觉从背景中分出对象,尤其在看物体的边角和轮廓时会提高视敏度,使对比的差异增强。在色觉方面,由于具有不同光谱感受性的神经元之间的相互抑制作用,可能形成颜色的拮抗效应(红和绿,黄和蓝的成对拮抗效应)。在其他感觉系统里,侧抑制也发生作用。例如,在听觉系统中,耳蜗神经纤维的侧抑制可以加强对音高的辨认。在皮肤上,侧抑制有助于触点的定位。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条