1) formula method
公式化方法
1.
The formula method of recursive programming based on solving state;
基于求解状态的递归程序设计公式化方法
2.
This paper names the race matrix problem, and resolves it using the formula method and the companion method presented by us .
本文命名了赛马矩阵问题 ,并利用笔者提出的公式化方法和伴随序列法解决了此问题 。
2) secondary diagonalization
形式公理化方法
3) fortification
[英][,fɔ:tɪfɪ'keɪʃn] [美]['fɔrtəfə'keʃən]
公式化;配方
4) Axiomatic approach
公理化方法
1.
This pa- per defines L-fuzzy rough approximation operator based on residuated lattice in axiomatic approach,and presents the simplest for- mulas of the axiom sets charactering the L-fuzzy rough approximation operators.
公理化方法是粗糙集理论研究的重要组成部分,利用公理化方法定义了基于剩余格的L模糊粗糙近似算子,并给出了描述L模糊粗糙近似算子公理集的极简形式。
2.
To develop a more reliable program, two checking methods about program’s varification of correctness are studied, such as Dijkstra’s weakest pre-predicate transformer and Hoare’s axiomatic approach.
为了使开发出的程序更具有可靠性,研究了两种正确性验证的演算方法,Dijkstra的最弱前置谓词变换法和Hoare的公理化方法。
5) axiomatic method
公理化方法
1.
From the history of the development of geometry,axiomatic method has undergone two stages.
从几何学的发展历史来看,公理化方法曾经历过两个阶段,即古代几何学公理化方法(也称为实体的公理化方法)和近代几何学公理化方法(也称为形式的公理化方法),文章着重探讨近代几何学公理化方法产生的主要因素及形成的历史途径。
2.
In the situation of the enlargement of college students,combining the background of basic educational reform with the research situation of Elementary Geometry Research,the article brings forward guiding ideology and program of integrating this curriculum,of emphasizing the integration of advanced and elementary geometry,emphasizing axiomatic methods and geometric transformation.
其中,强调“高初结合”,突出公理化方法和几何变换的思想。
3.
This paper intends to discuss an axiomatic method for the definition of determinant and prove that the deterninant defined by the aniomatic method and the determinant defined by the tradictional method equivalent,and discuss some teaching problems on the definition of determinant.
给出了行列式定义的公理化方法 ,并证明了行列式的公理化定义与传统的定义是等价的 。
6) formula
[英]['fɔ:mjələ] [美]['fɔrmjələ]
公式;化学式;配方
补充资料:公式化
①指文艺创作中套用某种固定格式来描写现实生活和人物性格的不良倾向。②指不针对具体情况而死板地根据某种固定方式处理问题。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条