1) countably compact
可数紧
1.
It is proved that pseudocompact M spaces or submetrizable spaces are countably compact, whereas pseudocompact σ spaces, p spaces or γ spaces need not to be countably compact.
对伪紧性在一些广义度量空间的作用进行讨论,证明了伪紧的M空间或次可度量空间是可数紧的,给出例子说明具有伪紧性的σ空间、p空间及拟订度空间也未必是可数紧的。
2.
We prove that a countably compact,nearly meta-Lindel*if T 2-space with countable tightness is compact.
证明了几乎亚Lindel f、可数紧度的可数紧T2 空间是紧空间 。
2) countable compact
可数紧
1.
A countable compact and nearly submeta-lindelf space with countable tightness are proved to be compact.
证明了几乎次亚lindelf、可数紧度的可数紧X是紧空间。
3) countable compactness
可数紧
1.
With inclusion degree to distinguish the covering strata,it establishes the property of Lindelf and countable compactness in fts,and discusses their primary properties.
用包含度区分覆盖层次,在不分明拓扑(fts)中建立Lindelf和可数紧性,并讨论其主要性质。
4) countable tightness
可数紧度
5) countable compact set
可数紧集
6) countably metacompact
可数亚紧
1.
It follows from one of these characterizations that the pseudo open and compact image of a countably paracompact space is a countably metacompact space.
利用半开复盖、定向开复盖、单调递增开复盖、点态W 加细和垫状加细等刻画了可数亚紧性 。
2.
Japanese mathematician Nobuyuki Kemoto proved that the product of two ordinals is hereditarily countably metacompact in 1996.
日本数学家NobuyukiKemoto在 1996年论证了两个序数的乘积是遗传可数亚紧空间 。
补充资料:可数紧空间
可数紧空间
countably - compact: space
可数紧空间{阴ntably一~padsP拟;一~-毗盯拼犯l脚叫犯1.01 一个拓扑空间从其任意可数开覆盖中均可选出有限子覆盖.M”.BOmlcx。‘KH认撰[补注1
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条