1) Enumeration formula
枚举公式
3) near-implicit enumeration
近隐式枚举
1.
According to probabilistic convergence of incomplete enumeration, the concept of near-implicit enumeration is proposed.
根据不完全枚举的概率收敛性,提出近隐式枚举的概念。
4) explicit state enumeration
显式状态枚举
5) well-implied enumeration
良性隐式枚举
1.
The judgment on well-implied enumeration method is given.
对数学规划中的枚举法进行了有效的分类:良性隐式枚举与病态隐式枚举。
6) enumeration
[英][i,nju:mə'reiʃən] [美][ɪ,njumə'reʃən]
枚举
1.
Combining enumeration and dynamic programming to optimize the field pipe-net;
枚举法与动态规划法结合优化田间管网
2.
A Practical Algorithm of Calculating the Enumeration Number of Any Max-heap;
计算任意最大值堆的枚举总数目的实用算法
3.
Inference in Credal networks through enumeration incompletely
Credal网络推理的一种不完全枚举法
补充资料:递归可枚举集
又称部分递归集。在能行性理论中,基本概念是递归函数,它可刻画为:任给x,只要它在x处有定义必可在有限步骤内求出其值。因此递归全函数(即处处有定义的)必可在有限步骤内求出它的任一值,至于递归部分函数(未必处处有定义的)则只要求有定义处可求出其值,但不要求能够在有限步骤内判定它的定义域的元素,即对任给的x判定x是否属于函数的定义域。
设有一集合 A与一函数α(x),如果α(x)=0当且仅当x∈A,则α(x)叫做A的特征部分函数,如果还有α(x)=1,当且仅当x唘A,则α(x)叫做A的特征全函数,简称特征函数。如果一集合 A的特征部分函数(也是特征函数)是递归全函数,则A叫做递归集;如果一集A的特征部分函数是递归部分函数,则A叫做部分递归集;部分递归集又可定义为某个递归部分函数的定义域。显然,A为递归集当且仅当:任给x,x属于A与否,恒可在有限步内判定;A为部分递归集当且仅当:任给x,如果x∈A,则必可在有限步内判定,但如果x唘A,可能永远不知道这件事(除非从别的途径)。因此有下列结果:
①如果A为递归集,则A为部分递归集;
②A为递归集当且仅当A的补集亦为递归集;
③A为递归集当且仅当A与它的补集都是部分递归集。
最后一点可看出:如果x∈A,因A为部分递归集必可在有限步内看出;如果x唘A,因A的补集为部分递归集亦可在有限步内看出,从而A必为递归集。
递归可枚举集是指它是某个一般递归函数(即递归全函数)??(x)的值域。因为递归全函数??(x)的每一个值都可在有限步内算出,可以逐步地计算??(0),??(1),??(2),...,从而得出递归可枚举集的所有元素。这便是递归可枚举集名称的来源。??(x)叫做该集的枚举函数,可能有两值??(α)与??(b)是相等的,即容许重复枚举。如果??(x)是不减函数或(严格)递增函数,便叫做不减枚举或(严格)递增枚举。
显然,如果x在一个递归可枚举集A内,必可在有限步内判定(只须依次计算??(0),??(1),...,便可);但如果x不在A内,而A又不是严格递增枚举,则很可能人们永远也不知道这事。根据上述部分递归集的特性,可知递归可枚举集都是部分递归集。反之,如果A为部分递归集,命其特征部分函数为α(x),当A为空集时,它当然不是任何递归全函数的值域,当A非空集时,则在第一阶段对α(0),α(1)各计算1步,第二阶段对α(0),α(1),α(2)各计算2步,...,第n阶段对α(0),α(1),α(2),...,α(n)各计算n步,...,并把首先出现的α(x)=0的根取为??(0),以后在每一阶段之末均把在该阶段时所已知的α(x)=0的根取为??在新主目处的值,??必为递归全函数,而且A的元素恰巧便是??(0),??(1),...的值。可见非空的部分递归集必是递归可枚举集。一般还把空集也算作递归可枚举集,这样两种集便一致起来了。
可以证明,A为递归可枚举集当且仅当它是某个原始递归函数的值域,又当且仅当它是某个初等函数的值域。另一方面,A为递归可枚举当且仅当它是某个递归部分函数的值域,只须仿照上法,在第n阶段计算??(0),??(1),...,??(n)各n步,便可把递归部分函数的值全部都枚举出来了。
已有办法把全体递归部分函数全部枚举起来,因此也可以把它们的定义域或值域全部枚举起来。设把第 x个递归部分函数的定义域(值域)记为Wx,则Wx便是全体部分递归集(递归可枚举集)的枚举(注意其中是有重复的)。如命K={x:x∈Wx}(即如果x恰巧在第x个部分递归集之内,便把x作为K 的元素),则K是一个递归可枚举集但不是递归集,从而K 的补集既不是递归集又不是递归可枚举集。这是人们作出的第一个不是递归可枚举集的例子,它也是一个很重要的集,对它已有充分的研究。
此外,如果?? 为递归部分函数,A为递归可枚举,则??-1(A)也是递归可枚举集。
著名的希尔伯特第10问题是:有没有一个能行方法,可决定任给的一个不定方程是否有整数解?这里P、Q是两个具有整系数的多项式。这个问题到1970年已经被否定地解决了,即如果把"能行方法"理解为"用计算递归全函数的方法",那末可以证明:这个能行方法是没有的。因为任何一个部分递归集(递归可枚举集)A,都有两个带整系数的多项式P、Q,使得
特别是当A即集合K时,也可找出相应的两个多项式P、Q。既然K不是递归的,x属于K与否是不能递归地判定的,那末对于"什么样的x能够使有解"的问题,也就不能递归地判定了。
上面关于集合的讨论可以推广到n元关系去。就n元关系R(x1,x2,...,xn)而言,如果R(x1,x2,...,xn)成立当且仅当,则??(x1,x2,...,xn)叫做R(x1,x2,...,xn) 的特征部分函数,如果还要求:R(x1,x2,...,xn)不成立当且仅当,则?? 叫做R的特征全函数,简称特征函数。如果关系R(x1,x2,...,xn)的特征部分函数(也是特征函数)是一个递归全函数,则R叫做递归关系;如果R(x1,x2,...,xn)的特征部分函数是递归部分函数,则R叫做部分递归关系。有了这些定义以后,以上的讨论完全可以推广到递归关系与部分递归关系方面来。当然,由于函数的值是一个数而不是n元向量,所以"递归可枚举关系"不能定义为某个递归全函数的值域而只能定义为部分递归关系。
但是对递归关系而论,有下列的结果,这是讨论递归时所没有的。
① R(x1,x2,...,xn)为部分递归关系当且仅当有一个n+1元递归关系或部分递归关系 W 使得。
② R(x1,x2,...,xn)为部分递归关系当且仅当有一个n+m 元递归或部分递归关系W 使得。
③ A为部分递归集当且仅当有一个二元递归或部分递归关系W 使得。
设有一集合 A与一函数α(x),如果α(x)=0当且仅当x∈A,则α(x)叫做A的特征部分函数,如果还有α(x)=1,当且仅当x唘A,则α(x)叫做A的特征全函数,简称特征函数。如果一集合 A的特征部分函数(也是特征函数)是递归全函数,则A叫做递归集;如果一集A的特征部分函数是递归部分函数,则A叫做部分递归集;部分递归集又可定义为某个递归部分函数的定义域。显然,A为递归集当且仅当:任给x,x属于A与否,恒可在有限步内判定;A为部分递归集当且仅当:任给x,如果x∈A,则必可在有限步内判定,但如果x唘A,可能永远不知道这件事(除非从别的途径)。因此有下列结果:
①如果A为递归集,则A为部分递归集;
②A为递归集当且仅当A的补集亦为递归集;
③A为递归集当且仅当A与它的补集都是部分递归集。
最后一点可看出:如果x∈A,因A为部分递归集必可在有限步内看出;如果x唘A,因A的补集为部分递归集亦可在有限步内看出,从而A必为递归集。
递归可枚举集是指它是某个一般递归函数(即递归全函数)??(x)的值域。因为递归全函数??(x)的每一个值都可在有限步内算出,可以逐步地计算??(0),??(1),??(2),...,从而得出递归可枚举集的所有元素。这便是递归可枚举集名称的来源。??(x)叫做该集的枚举函数,可能有两值??(α)与??(b)是相等的,即容许重复枚举。如果??(x)是不减函数或(严格)递增函数,便叫做不减枚举或(严格)递增枚举。
显然,如果x在一个递归可枚举集A内,必可在有限步内判定(只须依次计算??(0),??(1),...,便可);但如果x不在A内,而A又不是严格递增枚举,则很可能人们永远也不知道这事。根据上述部分递归集的特性,可知递归可枚举集都是部分递归集。反之,如果A为部分递归集,命其特征部分函数为α(x),当A为空集时,它当然不是任何递归全函数的值域,当A非空集时,则在第一阶段对α(0),α(1)各计算1步,第二阶段对α(0),α(1),α(2)各计算2步,...,第n阶段对α(0),α(1),α(2),...,α(n)各计算n步,...,并把首先出现的α(x)=0的根取为??(0),以后在每一阶段之末均把在该阶段时所已知的α(x)=0的根取为??在新主目处的值,??必为递归全函数,而且A的元素恰巧便是??(0),??(1),...的值。可见非空的部分递归集必是递归可枚举集。一般还把空集也算作递归可枚举集,这样两种集便一致起来了。
可以证明,A为递归可枚举集当且仅当它是某个原始递归函数的值域,又当且仅当它是某个初等函数的值域。另一方面,A为递归可枚举当且仅当它是某个递归部分函数的值域,只须仿照上法,在第n阶段计算??(0),??(1),...,??(n)各n步,便可把递归部分函数的值全部都枚举出来了。
已有办法把全体递归部分函数全部枚举起来,因此也可以把它们的定义域或值域全部枚举起来。设把第 x个递归部分函数的定义域(值域)记为Wx,则Wx便是全体部分递归集(递归可枚举集)的枚举(注意其中是有重复的)。如命K={x:x∈Wx}(即如果x恰巧在第x个部分递归集之内,便把x作为K 的元素),则K是一个递归可枚举集但不是递归集,从而K 的补集既不是递归集又不是递归可枚举集。这是人们作出的第一个不是递归可枚举集的例子,它也是一个很重要的集,对它已有充分的研究。
此外,如果?? 为递归部分函数,A为递归可枚举,则??-1(A)也是递归可枚举集。
著名的希尔伯特第10问题是:有没有一个能行方法,可决定任给的一个不定方程是否有整数解?这里P、Q是两个具有整系数的多项式。这个问题到1970年已经被否定地解决了,即如果把"能行方法"理解为"用计算递归全函数的方法",那末可以证明:这个能行方法是没有的。因为任何一个部分递归集(递归可枚举集)A,都有两个带整系数的多项式P、Q,使得
特别是当A即集合K时,也可找出相应的两个多项式P、Q。既然K不是递归的,x属于K与否是不能递归地判定的,那末对于"什么样的x能够使有解"的问题,也就不能递归地判定了。
上面关于集合的讨论可以推广到n元关系去。就n元关系R(x1,x2,...,xn)而言,如果R(x1,x2,...,xn)成立当且仅当,则??(x1,x2,...,xn)叫做R(x1,x2,...,xn) 的特征部分函数,如果还要求:R(x1,x2,...,xn)不成立当且仅当,则?? 叫做R的特征全函数,简称特征函数。如果关系R(x1,x2,...,xn)的特征部分函数(也是特征函数)是一个递归全函数,则R叫做递归关系;如果R(x1,x2,...,xn)的特征部分函数是递归部分函数,则R叫做部分递归关系。有了这些定义以后,以上的讨论完全可以推广到递归关系与部分递归关系方面来。当然,由于函数的值是一个数而不是n元向量,所以"递归可枚举关系"不能定义为某个递归全函数的值域而只能定义为部分递归关系。
但是对递归关系而论,有下列的结果,这是讨论递归时所没有的。
① R(x1,x2,...,xn)为部分递归关系当且仅当有一个n+1元递归关系或部分递归关系 W 使得。
② R(x1,x2,...,xn)为部分递归关系当且仅当有一个n+m 元递归或部分递归关系W 使得。
③ A为部分递归集当且仅当有一个二元递归或部分递归关系W 使得。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条