1) strictly convex set
严格凸集
1.
The paper studied the convexity of general convex sets in Banach spaces,and obtained some characteristic and properties of strictly convex sets and the daul theorem about strictly convex sets and smooth sets.
打破了从单位球出发研究Banach空间几何的具有局限性的研究方法,给出了严格凸集的若干特征刻画及性质,并得到了严格凸集和光滑集之间的对偶定理。
2) strictly convex fuzzy sets
严格凸模糊集
1.
The concepts of convex fuzzy sets, strong convex fuzzy sets and strictly convex fuzzy sets were defined by Zadeh.
首先引用扎德定义的凸模糊集、强凸模糊集、严格凸模糊集等概念,在此基础上研究了这三种集合间的转换条件,得到了严格凸模糊集与凸模糊集、严格凸模糊集与强凸模糊集的转换条件。
3) strictly anti-convex fuzzy sets
严格反凸模糊集
4) strict convex fuzzy subset
严格凸模糊子集
1.
The concepts of strong convex fuzzy subset and strict convex fuzzy subset are given.
给出了强凸模糊子集和严格凸模糊子集的定义。
5) fuzzy strictly quasiconvex sets
严格模糊拟凸集
6) strictly convex
严格凸
1.
In strictly convex Banach space,there is set F(T) of coupled fixed points of T for nonexpansive mapping,and it is a closed convex set.
在严格凸Banach空间中研究了非扩张映象T的耦合不动点集F(T)的闭凸性,获得了当F(T)是Hilbert空间中的闭线性子空间时,Ishikawa迭代的极限元与其初始元的最佳逼近元之间的关系。
2.
By using the renorming of Banach space, it was proved that every Banach space has an equivalent norm which is not strongly rough, and every Banach space has an equivalent norm which is not even, and every real Banach space has an equivalent norm ‖| · ‖| , such that ( X , ‖| · ‖| ) is not strictly convex or smooth.
应用再赋范方法,得到了任意Banach空间都存在不是粗的等价范数,任意Banach空间都存在不是平的等价范数等结论,证明了任意实Banach空间一定存在等价范数‖|·‖|,使得(X,‖|·‖|)既不是严格凸的,也不是光滑
3.
This paper uses uniform and simple form to treat uniformly convex, local uniformly convex, weak uniformly convex, weak local uniformly convex, strictly convex, (M) property and (WM) property in Banach space and an equivalence characterization of them in Banach space is given.
用统一且简洁形式处理Banach空间的一致凸、局一致凸、弱一致凸、弱局一致凸、严格凸及(M)性质和(WM)性质,给出了它们的一种等价刻画。
补充资料:凸凸
1.高出貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条