1) measuring frequency
测量频率
1.
New method for measuring frequency with chaotic system under strong noise density;
强噪声下利用混沌系统测量频率的新方法
2) frequency measuring
频率测量
1.
A new scheme of frequency measuring and signal automatic following was proposed.
提出了一种基于AD9850的高频信号频率测量与信号跟踪方案,介绍了芯片AD9850的基本工作原理及性能特点,给出了基于AD9850的信号自动跟踪测量系统的硬件结构框图,并进行了分析说明。
2.
This paper presents a useful method for frequency measuring.
频率是电力系统中一个十分重要的特征量,频率测量是电力系统测量装置中十分重要的环节。
3.
The paper introduces the equal-precision frequency measuring principle, applied circuit and software design for sinlge-chip microcomputer AT89C51,char acterizde as wide-range and high-precision of frequency measuring.
介绍单片机应用系统中的频率测量方法,其特点是在不需要复杂的传统等精度频率测量控制的情况下,利用单片机的自身特性,实现宽范围内实用、简单而且精度较高的等精度频率测量。
3) frequency measurement
频率测量
1.
High-accuracy frequency measurement scheme and its implementation;
高精度频率测量技术及其实现
2.
Development of a new power system frequency measurement and alarm system;
一种新的频率测量与报警系统的研制
3.
Digital Frequency Measurement Based on CPLD;
CPLD在数字频率测量中的应用
4) Measurement of frequency
频率测量
1.
AD9850 and its application in measurement of frequency;
AD9850及其在频率测量中的应用
2.
Based on the analyzing currently method of measurement of frequency,the principle of high quality measurement of frequency for SAW CO gas sensors is brought forward which unifies the Synchronous multicycle method and the frequency error multiplication method,with the aid of the entire synchronized mechanism and the frequency division technology.
声表面波(SAW)CO气体传感器的输出量是频率,因此高精度频率测定是保证其可靠性和正确计量的关键之一;尽管目前有多种频率测量方法,但适合并与传感器相配套的微型、高精度频率仪在国内尚罕见报道;我们在研究了现有频率测量方法的基础上,借助全同步机制、分频技术,将频率误差倍增法和多周期同步法相结合得到了一种适合于声表面波(SAW)CO气体传感器输出频率的测量方法,并给出了实现频率测量的原理和电路及其主要的电子元件。
5) frequency measure
频率测量
1.
Frequency Measure Using the Phase of the GPS Carrier;
GPS载波相位在频率测量中的应用
2.
The frequency measure is done by adopting singlechip and CPLD.
本文提出了一种基于单片机和CPLD的同步发电机自动准同期装置中的频率测量方法,介绍了频率测量的基本原理,在该原理的基础上采用单片机和CPLD综合技术实现了频率测量,CPLD进行频率检测,单片机进行数据处理与智能控制,并给出了测频电路的硬件电路图和软件流程图。
3.
In order to improve measure accuracy,a frequency measure system based on DSP is introduced.
针对在脉冲频率测量中,测量精度低的问题,提出了一种基于DSP芯片的频率测量系统。
6) measuring frequency
量测频率<测>
补充资料:时间测量与频率测量
"时间"有两个含义,一个是指"时刻";另一个是指"时间间隔",即两个时刻之间的间隔。"时刻"表明某个事件何时发生;"时间间隔"表明这个事件持续多久。频率是在单位时间内重复出现的次数。时间和频率描述周期现象的两个不同侧面,在数学上互为倒数,即f=1/T。因此,时间和频率共用一个基准。
在许多科学技术领域中,如人造卫星和导弹的制导、测控、测速、定位和数字通信,甚长基线干涉等,都需要极准确地确定时间和频率。因此,时间和频率测量已经成为电子测量的一个重要方面。频率是最准确、最稳定的一个物理量,频率量值能通过电波传播直接传递到使用现场,精度可达10-12 ~10-14 。此外,随着激光技术、亚毫米波技术和约瑟夫逊结器件等的发展,长度和时间、频率在基准器上的统一已成为现实(见光频测量)。在时间频率测量中,时间与频率基准和各种标准参考频率源具有关键性的作用。在原子物理、量子力学和电子技术的发展基础上,基于微观粒子能级跃迁而构成的各种时间、频率标准已广泛应用于各科学技术领域。时间、频率标准按构成机理可分为石英晶体频标和量子频标两大类。石英晶体频标和量子频标中的铯原子束时间频率基准、氢脉泽、铷脉泽、光抽运铷气室频标等,都已得到广泛应用。其他如氢束、离子储存激光频标等,还处于研究阶段。
频率源的一个主要技术指标是频率准确度,即频率的实际值与标称值的相对偏差。通过频率值测量可以确定频率准确度。频率源的另一个主要技术指标,是频率稳定度,即频率值随机起伏的特性。频率稳定度测量,通常采用求出阿仑方差的时域测量方法和求出相对频率起伏谱密度与相位起伏谱密度的频域测量方法(见时域测量与频域测量)。
通过对时和校频,各地的时间频率标准可以在时刻和频率上保持一定的精度或符合度,这就是时间频率同步。时间频率同步技术发展很快,对精度的要求也越来越高,除了利用高频、甚低频、罗兰-C、电视、卫星和搬运钟等传统方法外,一些国家还在研究利用全球定位系统、静止轨道激光同步和航天飞机等时间同步的新方法(见时间同步与频率同步)。
在许多科学技术领域中,如人造卫星和导弹的制导、测控、测速、定位和数字通信,甚长基线干涉等,都需要极准确地确定时间和频率。因此,时间和频率测量已经成为电子测量的一个重要方面。频率是最准确、最稳定的一个物理量,频率量值能通过电波传播直接传递到使用现场,精度可达10-12 ~10-14 。此外,随着激光技术、亚毫米波技术和约瑟夫逊结器件等的发展,长度和时间、频率在基准器上的统一已成为现实(见光频测量)。在时间频率测量中,时间与频率基准和各种标准参考频率源具有关键性的作用。在原子物理、量子力学和电子技术的发展基础上,基于微观粒子能级跃迁而构成的各种时间、频率标准已广泛应用于各科学技术领域。时间、频率标准按构成机理可分为石英晶体频标和量子频标两大类。石英晶体频标和量子频标中的铯原子束时间频率基准、氢脉泽、铷脉泽、光抽运铷气室频标等,都已得到广泛应用。其他如氢束、离子储存激光频标等,还处于研究阶段。
频率源的一个主要技术指标是频率准确度,即频率的实际值与标称值的相对偏差。通过频率值测量可以确定频率准确度。频率源的另一个主要技术指标,是频率稳定度,即频率值随机起伏的特性。频率稳定度测量,通常采用求出阿仑方差的时域测量方法和求出相对频率起伏谱密度与相位起伏谱密度的频域测量方法(见时域测量与频域测量)。
通过对时和校频,各地的时间频率标准可以在时刻和频率上保持一定的精度或符合度,这就是时间频率同步。时间频率同步技术发展很快,对精度的要求也越来越高,除了利用高频、甚低频、罗兰-C、电视、卫星和搬运钟等传统方法外,一些国家还在研究利用全球定位系统、静止轨道激光同步和航天飞机等时间同步的新方法(见时间同步与频率同步)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条