1) IMM arithmetic
IMM(Interacting MultipleModel)算法
2) IMM algorithm
IMM算法
1.
Maneuver target tracking based on fuzzy adaptive IMM algorithm;
基于模糊自适应IMM算法的机动目标跟踪方法
2.
A adaptive interacting multiple models(AIMM) algorithm is proposed to track maneuvering target,turn model is applied as maneuvering model of target,angle speed is estimated and the model set which is composed of several models around the estimation value are chosen to cover all possible maneuverability,then IMM algorithm is utilized to estimation target state.
文中提出了一种改进的跟踪机动目标的自适应IMM(AIMM)算法,采用协同转弯运动模型作为目标的机动模型,通过估计目标的角速度,并在估计参数值的周围选择数量一定的模型组成模型集来覆盖目标所有可能的运动模式,采用交互模型算法进行状态估计;应用变结构思想,将模型之间的切换理解为随机有向图,并综合利用前一时刻模型的后验概率和当前时刻模型的预测概率,计算模型之间的转移概率,从而能够根据目标(转弯)机动的情况,自适应地建立IMM算法的可变模型集。
3.
A fuzzy IMM algorithm is proposed in this paper,which through the fuzzy inference to get the matching degree of every filtering model in IMM algorithm,i.
文中提出了一种模糊IMM(FIMM)算法,通过模糊逻辑推理得到IMM算法模型集中各滤波模型的匹配度,即模型的概率,代替IMM算法中通过交互组合计算模型概率的方法,该方法不需要IMM算法中的模型先验概率及马尔可夫转移概率,从而降低了算法的复杂程度。
3) IMM filter arithmetic
IMM滤波算法
4) adaptive IMM(Interacting Multiple Model) algorithm
自适应IMM算法
5) interacting multiple model (IMM) algorithm
交互多模算法(IMM)
6) Input Method Management
IMM(输入法管理器)
补充资料:BP算法
分子式:
CAS号:
性质:又称逆推学习算法,简称BP算法,是1986年鲁梅哈特(D. E. Rumelhart)和麦克莱朗德(J. L. McClelland)提出来的。用样本数据训练人工神经网络(一种模仿人脑的信息处理系统),它自动地将实际输出值和期望值进行比较,得到误差信号,再根据误差信号从后(输出层)向前(输入层)逐层反传,调节各神经层神经元之间的连接权重,直至误差减至满足要求为止。反向传播算法的主要特征是中间层能对输出层反传过来的误差进行学习。这种算法不能保证训练期间实现全局误差最小,但可以实现局部误差最小。BP算法在图像处理、语音处理、优化等领域得到应用。
CAS号:
性质:又称逆推学习算法,简称BP算法,是1986年鲁梅哈特(D. E. Rumelhart)和麦克莱朗德(J. L. McClelland)提出来的。用样本数据训练人工神经网络(一种模仿人脑的信息处理系统),它自动地将实际输出值和期望值进行比较,得到误差信号,再根据误差信号从后(输出层)向前(输入层)逐层反传,调节各神经层神经元之间的连接权重,直至误差减至满足要求为止。反向传播算法的主要特征是中间层能对输出层反传过来的误差进行学习。这种算法不能保证训练期间实现全局误差最小,但可以实现局部误差最小。BP算法在图像处理、语音处理、优化等领域得到应用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条