1) Cubic power spectrum
立方功率谱
1.
By means of making an AR model of the random process, a simulation method for coherent Gauss random process with cubic power spectrum based on modern signal theory is put forward in this paper by using Levis on-Durbin algorithm and MDL rule and compared with existing spectral estimation methods.
立方功率谱是目前国际上普遍采用的地杂波功率谱模型。
2) power spectrum method
功率谱方法
1.
Using the proposed spatial coherence model,the analytical expressions of combination coefficients are deduced for power spectrum methods and response spectrum methods under multi-support seismic excitations.
本文模型与计算方法使多点地震激励下结构响应的计算时间减低至积分方法的1/20以下,使多点地震反应谱方法和多点地震功率谱方法在计算时间方面实用化。
3) cross-spectrum method
互功率谱方法
1.
in this paper is introduced a way for measurement of moment output power and electrical input power of moment actuators by means of the cross-spectrum method,with some of the results thus obtained.
本文介绍了利用互功率谱方法测量力矩激振器的力矩输出功率和输入功率的方法和结果。
4) fractional Fourier power spectra
分数傅立叶功率谱
5) Fast Fourier Transform power spectrum
快速傅立叶变换功率谱
6) power spectrum
功率谱
1.
Application of TEOAE power spectrum quantitative indices in clinic;
瞬态诱发耳声发射的功率谱定量指标应用于临床诊断
2.
Time domain and power spectrum of wide frequency band electrocardiogram in pigeons;
正常家鸽的宽频带心电图时域值和功率谱
3.
Seismic input of power spectrum for single-degree-of-freedom system;
单自由度体系地震动输入功率谱的确定
补充资料:功率谱密度估计
随机信号的功率谱密度用来描述信号的能量特征随频率的变化关系。功率谱密度简称为功率谱,是自相关函数的傅里叶变换。对功率谱密度的估计又称功率谱估计。平稳随机信号x(t)的(自)功率谱Sxx(ω)定义为
(1)
式中rxx(τ)为平稳随机信号的自相关函数。
对于离散情况,功率谱表示为
(2)
式中T为离散随机信号的抽样间隔时间。
当利用随机信号的 N个抽样值来计算其自相关估值时,即可得到功率谱估计为
(3)
可见,随机信号的功率谱与自相关函数互为傅里叶变换的关系,这两个函数分别从频率域和时间域来表征随机信号的基本特征。按上式计算功率谱估值,其运算量往往很大,通常采用快速傅里叶变换算法,以减少运算次数。
计算信号功率谱的方法可以分为两类:一为线性估计方法,有自相关估计、自协方差法及周期图法等。另一类为非线性估计方法,有最大似然法、最大熵法等。线性估计方法是有偏的谱估计方法,谱分辨率随数据长度的增加而提高。非线性估计方法大多是无偏的谱估计方法,可以获得高的谱分辨率。
参考书目
何振亚:《数字信号处理的理论与应用》,人民邮电出版社,北京,1983。
A. V. Oppenheim, R. W. Schafer, Digital Signal Processing Prentice-Hall, Inc., Englewood Cliffs,New Jersey,1975.
(1)
式中rxx(τ)为平稳随机信号的自相关函数。
对于离散情况,功率谱表示为
(2)
式中T为离散随机信号的抽样间隔时间。
当利用随机信号的 N个抽样值来计算其自相关估值时,即可得到功率谱估计为
(3)
可见,随机信号的功率谱与自相关函数互为傅里叶变换的关系,这两个函数分别从频率域和时间域来表征随机信号的基本特征。按上式计算功率谱估值,其运算量往往很大,通常采用快速傅里叶变换算法,以减少运算次数。
计算信号功率谱的方法可以分为两类:一为线性估计方法,有自相关估计、自协方差法及周期图法等。另一类为非线性估计方法,有最大似然法、最大熵法等。线性估计方法是有偏的谱估计方法,谱分辨率随数据长度的增加而提高。非线性估计方法大多是无偏的谱估计方法,可以获得高的谱分辨率。
参考书目
何振亚:《数字信号处理的理论与应用》,人民邮电出版社,北京,1983。
A. V. Oppenheim, R. W. Schafer, Digital Signal Processing Prentice-Hall, Inc., Englewood Cliffs,New Jersey,1975.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条