1)  wavelet/wavelet packet transform
小波变换/小波包变换
2)  wavelet
小波
1.
Whole-band ANC system with the FX structure based on wavelet packet decomposition;
一种小波包分解的FX结构全频带ANC系统
2.
Ultrasonic Signal Compression Based on Adaptive Wavelet Thresholding;
铝合金锻件超声信号的自适应小波压缩方法
3.
Application of wavelet multiresolution analysis to detecting thickness of coal seam;
小波多尺度分析在煤厚探测中的应用
3)  wavelet analysis
小波
1.
In data processing,the wavelet analysis was used for the differential spectral data,so the noise was reduced and the precision of analysis was improved.
在数据处理过程中,对微分光谱数据进行了小波去噪处理,使信噪比得到了增加,从而使分析精度得到了改善。
2.
Based on wavelet analysis for the signal characteristics and the wheel flat abrasion characteristics, the distributed multi-S.
采用小波分析与支持向量机 (SVM)相结合对列车车轮擦伤进行自动识别。
4)  wavelets
小波
1.
The Smoothing of B-Splines Based on Wavelets;
基于小波分析的B样条曲线的光顺
2.
Construction of symmetric and anti-symmetric semi-orthogonal wavelets with dilation factor 3;
三进制对称和反对称半正交小波的构造
3.
Condition of Mirror Filter s Convergence to Wavelets and Construction of Wavelet;
镜像滤波器收敛到小波的条件及小波的构造
5)  wavelet transform
小波
1.
Research about speech enhancement based on wavelet transform;
基于小波变换的人声语音增强技术研究
2.
A Study of Small Target Detection Based on Wavelet Transform;
基于小波变换的小目标检测方法研究
3.
The algorithm is improved according to the theories of wavelet analysis and artifical immune system, a new efficient fault diagnosis system based on the wavelet transform and immune system is presented.
根据小波分析和人工免疫系统的原理,提出了一种基于小波变换和免疫系统的故障诊断系统。
6)  wavelet and wavelet packets
小波和小波包
1.
A series of techniques,such as WVD(wigner-ville distribution),STFT(short-time fourier transform),wavelet and wavelet packets analysis,were adopted for processing nonstationary dynamic signals.
以大型电铲为例,采用WVD(Winger-Villedistributions),STFT(shorttimefouriertransform),小波和小波包分析构成处理非平稳动态信号系列技术,揭示变工况(变速、变负载、非平稳、非线性)状态下,大型电铲提升系统工作时出现的摩擦、冲击、磨损、附加脉冲及轴承早期故障等的特征,结果表明对非平稳运行工况是能够监测诊断的。
参考词条
补充资料:Radon变换和逆Radon变换


Radon变换和逆Radon变换


X线物理学术语。CT重建图像成像的主要理论依据之一。1917年澳大利亚数学家Radon首先论证了通过物体某一平面的投影重建物体该平面两维空间分布的公式。他的公式要求获得沿该平面所有可能的直线的全部投影(无限集合)。所获得的投影集称为Radon变换。由Radon变换进行重建图像的操作则称为逆Radon变换。Radon变换和逆Radon变换对CT成像的意义在于,它从数学原理上证实了通过物体某一断层层面“沿直线衰减分布的投影”重建该层面单位体积,即体素的线性衰减系数两维空间分布的可能性。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。