1) lagrange multiplier approach
拉格朗日数乘法
2) Lagrange multiplicator law
拉格朗日乘数法
1.
Based on the ratio of middle to outside law design idea,the application target programming method is used to establish a simplification model and improvement model based on the most superior design of can shape and the size,and the simplification model is solved by the Lagrange multiplicator law.
基于黄金分割律的设计理念,应用目标规划的方法建立了易拉罐形状和尺寸最优设计的简化模型与改进模型,以拉格朗日乘数法求解了简化模型,利用mathematic求出了改进模型数值解,并通过测量数据进行了验证。
3) Lagrange multiplier method
拉格朗日乘数法
1.
By using the Lagrange multiplier method to find the extreme values of multivariate function,the distance formulas from a point to a straight line,a point to a plan and between two nocoplanar straight lines were established.
利用求多元函数极值的拉格朗日乘数法,推导了点到直线、点到平面及两异面直线间的距离公式,并推导了椭球面上平面截线的面积公式。
2.
IN the paper,I slolve the extreme problem of the dual function determined by the implicit function ,using Lagrange Multiplier Method and Dual Function extreme conditions exist to the full.
本文利用拉格朗日乘数法与二元函数极值存在的充分条件,解决了求由隐函数确定的二元函数的极值问题,从而简化了二元隐函数求极值的运算。
3.
This paper has,from the Lagrange multiplier method,discussed the condition limit of a class quadratic form and brought out the main result,applying which to solve the condition limit of function of several variables.
从拉格朗日乘数法入手,讨论一类二次型的条件极值问题,给出了主要结果,并应用它求解多元函数条件极值问题。
4) Lagrange Multiplier
拉格朗日乘数法
1.
By means of the Lagrange Multiplier, this paper points out the position of celestial bodies when their azimuth varies the slowest during diurnal motion, thus consummating the conclusion concerned.
用拉格朗日乘数法确定天体周日视运动过程中方位变化速度最慢点的位置,从而使有关结论完整化。
2.
An efficient iterative Lagrange multiplier approach is devel-oped to design the filter banks.
本文使用了拉格朗日乘数法,通过迭代实现了原型滤波器的设计。
3.
This article tries to present a proof to Lagrange multiplier in the condition of n functions with m additional conditions.
本文就n元函数在m个附加条件下,给出拉格朗日乘数法的一个证明。
5) lagrange method of multipliers
拉格朗日乘数法
1.
Furthermore, utilizing the Lagrange method of multipliers and the implicit theorem to work out the critical value which makes one of those inequality locally inverted.
然后利用拉格朗日乘数法与隐函数定理,求出了使其中一不等式局部反向的临界值。
6) Lagrangian multiplier method
拉格朗日乘数法
1.
This article mainly uses "Lagrangian multiplier method" wich is the important way of solving the Extremal Problem under the restraint condition to solve the distance question of space analytic geometry and proves some important conclusions.
文章主要利用约束条件下的极值问题的重要解决方法——"拉格朗日乘数法"来计算解决空间解析几何中的距离问题,并证明三个重要结论。
补充资料:乘法格
乘法格
multiplicative lattice
乘法格[m幽喊Ca肠阳h.Ce;MyJ‘1.~皿明pe川e-双a」 具有附加的称为乘法(表示成·)的交换与结合的二元运算的一种完全格(田m户k址h川比)L=
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条