说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 线性不等保护码
1)  LUEP code
线性不等保护码
1.
From these principles the paper deduces the relationships between the protection ability of LUEP code and the code s distance characteristic.
线性不等保护码能够为分组码矢量中的特定信息位提供更高的纠错能力,这种性能与码空间的距离特性密切相关。
2)  Unequal Error Protection(UEP) code
不等保护码
1.
Considering the different sensitivities for bit errors of the information in Communication-Based Train Control(CBTC) system,this paper proposes a new error-correcting code for the more important information,which is R-S Unequal Error Protection(UEP) code.
针对轨道交通车地通信中信息对误码敏感程度不同的现象,提出利用不等保护码作为信道编码方案,为基于通信的列车控制(CBTC)系统重要信息提供更好的误码保护。
3)  R-S UEP code
R-S不等保护码
1.
This paper studied the coding algorithms for the R-S UEP codes based on the algebraic characteristics of the code space.
以R-S不等保护码为研究对象,在分析码空间特性的基础上,着重研究编译码算法。
4)  different protect ability code
不等保护能力码
1.
A project on a different protect ability code is presented based on using (7,3)and(7,4)circle code and the anti-jamming ability of importance informational bit in digital communication was improved .
提出了一种用 (7,3)和 (7,4 )循环码构造不等保护能力码的方案 ,提高了数字通信中重要信息位的抗干扰能力 ,增加了传输可靠性 ,给出了编码和译码方法 ,对其性能进行了分
5)  TN unequal-protection
TN码不等保护
1.
The proposed payload can support TN unequal-protection for H.
264视频码流的TN码不等保护,保证时延在实时视频通信允许的范围内。
6)  unequal error protection
不等保护特性
1.
An improved unequal error protection based HARQ for LDPC;
基于LDPC码不等保护特性改进的混合重传算法
补充资料:线性不等式


线性不等式
Imear inequality

线性不等式[恤.r血啊回ity;。HH。枷。e肚paB饮c。。] 形如 l(x)一a三a,x,+…+aox。一a攫0(1)或形如 I(x)一a三a .x,+…+aox。一a<0(2)的不等式,其中a:,…,“,,a为任意实数,而x=(xl,“‘,x。). 按一种较广的意义,线性不等式是形如 f(x)一a(0(3)或形如 f(x)一a<0(4)的不等式,其中,f(x)是实向t空间(似torsPace)L(R)上其值取自实数域R的线性(亦即可加与齐次的)函数,且a‘R.可以得到线性不等式概念的进一步推广,如果代替R取任意的序域(orde代过反U)尸.基于这种推广的线性不等式的现代理论业已创立(见11]). 在解析力学,数的几何学以及函数逼近中许多重要问题归结到线性不等式组的研究.与线性不等式组有关的一些结果在经济学研究中找到非常重要的应用.特别地,在这些应用中,线性规划(如‘江prog卫m.功川g)应运兴起.在技术经济学与经济计划中许多实际问题归结到特定的线性不等式组的求解;这业已有效地确定线性不等式领域内的现代研究方向. 依此特别地产生线性不等式理论的主要原理,边界解原理,它首先对按模的形式的有限线性不等式组,即对形如 I毛(x)一ajl兰la,lx:+‘·+a,。x,一aj}(d,,(5)j=l,…,m,的不等式组建立,其中,所有马,,“‘,aj,,马在最一般情况下均为复数域的元素,而所有呜均为非负实数,j=l,…,m(见[4】). 边界解原理(p~iPle ofbo朋ds灯soluljons)所含的内容如下.在具有秩r>0的形如(5)的任意相容线性不等式组里,可选取秩为r的由r个不等式组成的子系统,使得后者至少有一个解,它让所有子系统中的不等式成为等式,并满足(5)的所有不等式,换言之.它是(5)的一个解. 边界解原理已被扩展到域R上的线性不等式组(s声tem of linOUh叫叫jti巴)(见[5」): l,(x)一aj三马.x,+’“+a,。x,一a,(o,(6)j=1,…,m(亦即含实数马.,…,a]。,马的不等式组,j=1,…,m),且具有下面较强结论的形式:在秩为;>0的完全系统(comP比哪七m)(6)里,可选取秩为r的由r个不等式组成的子系统,使得让其所有不等式成为等式的此子系统的任意解满足(6)的所有不等式〔对形如(6)的不等式组,这个结论原来是等价于前一个结论).线性不等式组的秩(m业ofa哪tOll ofha口ru】闪诬五。留)是出现在该组中的线性无关式七(x)的最大个数. 边界解原理也已扩展到任意序域尸上的形如(6)的不等式组,甚至推广到尸上由有限多个形如(3)的线性不等式组成的更一般的不等式组(见〔61).这个原理蕴涵以下的对任意序域上形如(6)的不等式组的相容性条件.秩为r>O的不等式组(6)是相容的,当且仅当在它的系数矩阵中存在一个;阶非零子式(m切。r)△,使得对于用此矩阵的第j行与元素马组成的列加边到△所得到的行列式乌,j=1,…,夙所有的比值匀/△均为非负的.在相容的线性方程组(见线性方程(劝1‘江叫明石叨))aj:x,+…+a,。x。一aj“o(j=1,’·’,m)情况下,对它的系数矩阵的任意非零r阶子式△,这些比值均为零. 线性不等式理论的发展始于19世纪末.具有一般特征的创立在〔31,19]中的头一批命题之一便是Mir改-。讹h一F’ark璐定理(M让医。讹ki一f妞山留小即此m),它现在是线性不等式理论中关键定理之一:如果R上相容不等式组(6)的所有解满足不等式 l(x)一b=b,x,+二+b。x。一b成o,b,瓦。R,污1,…,n,那么存在非负数几,…,p。,使得对x=(x,,二,x。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条