1) reversible symmetrical matrix
可逆对称矩阵
1.
For a given reversible symmetrical matrix with the elements of its diagonal is 0, it provides a method for constructing k - 1 s reversible symmetrical matrixes,such that every non-zero linear combination of these k s matrixes is also a reversible symmetrical matrix.
本文证明了任意代数次数为2的n元Bent函数都与形式为x1x2+x3x4+…+xn-1xn的Bent函数线性等价;给出了以任意已知代数次数为2的n元Bent函数为分量的多维Bent函数的构造法;利用本文所给的方法,对任一主对角线上元素全为0的n阶可逆对称矩阵M1,都可以构造造k-1个主对角线上元素全为0的n阶可逆对称矩阵M2…,Mk,使得M1,M2…,Mk的任意非零线性组合仍是主对角线上元素全为0的阶可逆对称矩阵。
4) invertible matrix
可逆矩阵
1.
The adjoint matrix of the inverse matrix for an invertible matrix over a nonnegative commutative semiring;
非负交换半环上可逆矩阵的伴随矩阵
2.
The method makes use of an elementary transformation of mastrix to find the solution of an invertible matrix.
给出了利用矩阵的初等行变换求可逆矩阵的伴随矩阵的一种简便方法。
3.
As an example of the application of some knowledge of Linear Algebra,this paper discusses the application of an invertible matrix in secure communication,some basic problems of this application,and the solutions to these problems.
作为工科“线性代数”课中相关知识的一个具体应用的例子,从理论与实践相结合的角度论述了可逆矩阵在保密通信中的应用及其存在的问题与对策等。
5) reversible matrix
可逆矩阵
1.
Necessary and sufficient condition for an integral matrix to be embeddable in a reversible matrix on the integral ring;
整数矩阵可嵌入整数环上的可逆矩阵的充要条件
2.
In order to make the evaluation of the determinant of n-order simpler,this article presents a practical method to calculate the determinant of n-th order through block matrix and reversible matrix.
为使n阶行列式的求值更加简便,给出了一种运用分块矩阵的乘法和可逆矩阵计算n阶行列式的实用方法。
3.
The relations among three sorts of primary transformation of the matrix are discussed;the reversible matrix can be written as the product of the two primary matrices,i.
讨论了矩阵的三种初等变换的关系,可逆矩阵可写成Di(k)、Tij(k)两种类型初等矩阵的乘积,以及初等变换在分块矩阵中的简单应用。
补充资料:可逆矩阵
又称非奇异矩阵, 亦即行列式不等于0的方阵。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。