1) sparse antenna array
稀疏阵列天线
1.
The sparse antenna array is a special type of phased array antenna.
稀疏阵列天线是一类特殊的相控阵天线,阵列稀疏技术的采用在降低造价的同时给天线结构设计带来很大困难。
4) thinned arrays
稀疏阵列
1.
Genetic algorithm and FFT for the synthesis of element weight coefficients in asymmetric thinned arrays;
运用GA和FFT确定稀疏阵列的激励幅度
2.
Genetic algorithm (GA) is used for the synthesis of thinned arrays (whose elements are thinned from the uniform grid),which uses not only element spacings but also element excitation as variables,so it provides more degree of freedom to control the characters of thinned arrays.
本文运用遗传算法 (GA)综合稀疏阵列 (单元从规则栅格中稀疏 )时 ,不仅优化单元间距 ,而且将单元激励也作为优化变量 ,从而提供了更多的自由度来控制稀疏阵列的性能 。
5) Sparse array
稀疏阵列
1.
This paper deals with the issues associated with applying space-time adaptive processing(STAP) techniques in airborne sparse array applications.
研究了机载稀疏阵列雷达杂波谱特性,提出总的孔径不变且稀疏后任意2个阵元间的间距小于等于时域脉冲的个数时,无论稀疏后有效阵元数多少,杂波协方差矩阵的秩都保持不变。
2.
In this paper interpolation technique is used for processing the FIM(Fourier Integral Method) beamforming of equispaced linear sparse array.
运用插值技术对等距稀疏阵列进行FIM(傅里叶积分法)波束形成处理,不仅有效地增加了阵元数目,而且解决了等距稀疏阵列因阵元间距大于半波长而引起的信号角度模糊问题,同时采用FIM波束形成技术提高了指向性性能和抑制相关干扰噪声性能。
6) thinned array
稀疏阵列
1.
This paper points out that a thinned array can be set with the density function of the Gaussian distribution,after the extending of covariance matrix the gain can be increased clearly.
提出利用高斯随机分布的密度函数设置稀疏阵列,稀疏阵列得到的协方差矩阵经扩展后,增益会有明显的提高。
2.
So we can use thinned array to solve these problems.
在许多工程应用中,天线阵列要求有窄的扫描波束,而不要求有相应的增益,因此可以采用稀疏阵列。
3.
On the basis of a thinned array and code division signals, the space time adaptive processing (STAP) on an airborne radar is investigated to carry out ground clutter suppression and moving target detection.
基于稀疏阵列和码分正交信号,研究了机载雷达的空时自适应处理(STAP)技术,用于空中预警背景下的地面杂波抑制和运动目标探测。
补充资料:阵列天线
由许多相同的单个天线(如对称天线)按一定规律排列组成的天线系统,也称天线阵。单个天线的方向图不易控制,增益不高,其他参量往往也不能满足使用要求,所以在某些应用场合(例如雷达天线等)需要使用阵列天线。阵列天线的各组成天线单元应有一定的排列规律和馈电方式,以获得所要求的功能。
分类 按单元排列可分为线阵和面阵。最常用的线阵是各单元的中心依次等距排列在一直线上的直线阵。线阵的各单元也有不等距排列的,各单元中心也可以不排列在一直线上,例如排列在圆周上。多个直线阵在某一平面上按一定间隔排列就构成平面阵,若各单元的中心排列在球面上就构成球面阵。
按辐射图形的指向可分为侧射天线阵、端射天线阵和既非侧射又非端射的天线阵。侧射天线阵是最大辐射方向指向阵轴或阵面垂直方向的天线阵。端射天线阵是最大辐射方向指向阵轴方向的天线阵。最大辐射方向指向其他方向的天线阵为既非侧射又非端射的天线阵。
按照功能可分为同相水平天线、频率扫描天线、相控阵天线、多波束天线、信号处理天线、自适应天线等。
工作原理 阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和(矢量和)。由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。
图1为最简单的二元天线阵。把功率P馈给一个天线单元时,在天线最大辐射方向足够远(距离r)的A点产生场强E0,当把同样的功率馈给等幅同相二元天线阵(图1)时,每个天线单元得到一半功率,它们在A点各产生相同的场强,则合成场强为。也就是说,总馈电功率不变,而产生的场强却增大到原来的倍,即天线阵的增益增大,与一个单元相比,辐射也较集中。上述结论是在认为两天线单元间相互没有影响时得出的,这只有当两单元相距很远时才能达到。天线阵的单元数越多,天线阵的增益就可能越高,当然天线阵的尺寸也就越大。
方向图相乘原理 对于单元数很多的天线阵,用解析方法计算阵的总方向图相当繁杂。假如一个多元天线阵能分解为几个相同的子阵,则可利用方向图相乘原理比较简单地求出天线阵的总方向图。
一个可分解的多元天线阵的方向图,等于子阵的方向图乘上以子阵为单元的天线阵的方向图。这就是方向图相乘原理。一个复杂的天线阵可考虑多次分解,即先分解成大的子阵,这些子阵再分解为较小的子阵,直至得到单元数很少的简单子阵为止,然后再利用方向图相乘原理求得阵的总方向图。这种情况适应于单元是无方向性的条件,当单元以相同的取向排列并自身具有非均匀辐射的方向图时,则天线阵的总方向图应等于单元的方向图乘以阵的方向图。
图2上部的四元天线阵的总方向图可用方向图相乘原理来求出。阵中各单元为等幅同相激励的半波天线。这样一个天线阵可以分为两个相同的子阵,单元1和2为一个子阵,这个子阵可以看成一个整体,即可用一等效单元来代替,这个等效单元处在左边的"×"点上,单元3和4为另一子阵,这个子阵也可用一等效单元来代替,这个等效单元处在右边的"×"点上。这两个等效单元又构成一个天线阵。于是利用方向图相乘原理就可以求得这天线阵的总方向图 (图2的下部)。其中等号左边第一个是单元的方向图,第二个是子阵(即等效单元)的方向图,第三个是子阵的阵的方向图。等号右边是这三个方向图的乘积,即阵的总方向图。其他平面内的总方向图可仿照上述步骤求得。这个方法可以推广到求更复杂天线阵的总方向图,只要这个复杂天线阵能分解为几个相同的子阵即可。
分类 按单元排列可分为线阵和面阵。最常用的线阵是各单元的中心依次等距排列在一直线上的直线阵。线阵的各单元也有不等距排列的,各单元中心也可以不排列在一直线上,例如排列在圆周上。多个直线阵在某一平面上按一定间隔排列就构成平面阵,若各单元的中心排列在球面上就构成球面阵。
按辐射图形的指向可分为侧射天线阵、端射天线阵和既非侧射又非端射的天线阵。侧射天线阵是最大辐射方向指向阵轴或阵面垂直方向的天线阵。端射天线阵是最大辐射方向指向阵轴方向的天线阵。最大辐射方向指向其他方向的天线阵为既非侧射又非端射的天线阵。
按照功能可分为同相水平天线、频率扫描天线、相控阵天线、多波束天线、信号处理天线、自适应天线等。
工作原理 阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和(矢量和)。由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。
图1为最简单的二元天线阵。把功率P馈给一个天线单元时,在天线最大辐射方向足够远(距离r)的A点产生场强E0,当把同样的功率馈给等幅同相二元天线阵(图1)时,每个天线单元得到一半功率,它们在A点各产生相同的场强,则合成场强为。也就是说,总馈电功率不变,而产生的场强却增大到原来的倍,即天线阵的增益增大,与一个单元相比,辐射也较集中。上述结论是在认为两天线单元间相互没有影响时得出的,这只有当两单元相距很远时才能达到。天线阵的单元数越多,天线阵的增益就可能越高,当然天线阵的尺寸也就越大。
方向图相乘原理 对于单元数很多的天线阵,用解析方法计算阵的总方向图相当繁杂。假如一个多元天线阵能分解为几个相同的子阵,则可利用方向图相乘原理比较简单地求出天线阵的总方向图。
一个可分解的多元天线阵的方向图,等于子阵的方向图乘上以子阵为单元的天线阵的方向图。这就是方向图相乘原理。一个复杂的天线阵可考虑多次分解,即先分解成大的子阵,这些子阵再分解为较小的子阵,直至得到单元数很少的简单子阵为止,然后再利用方向图相乘原理求得阵的总方向图。这种情况适应于单元是无方向性的条件,当单元以相同的取向排列并自身具有非均匀辐射的方向图时,则天线阵的总方向图应等于单元的方向图乘以阵的方向图。
图2上部的四元天线阵的总方向图可用方向图相乘原理来求出。阵中各单元为等幅同相激励的半波天线。这样一个天线阵可以分为两个相同的子阵,单元1和2为一个子阵,这个子阵可以看成一个整体,即可用一等效单元来代替,这个等效单元处在左边的"×"点上,单元3和4为另一子阵,这个子阵也可用一等效单元来代替,这个等效单元处在右边的"×"点上。这两个等效单元又构成一个天线阵。于是利用方向图相乘原理就可以求得这天线阵的总方向图 (图2的下部)。其中等号左边第一个是单元的方向图,第二个是子阵(即等效单元)的方向图,第三个是子阵的阵的方向图。等号右边是这三个方向图的乘积,即阵的总方向图。其他平面内的总方向图可仿照上述步骤求得。这个方法可以推广到求更复杂天线阵的总方向图,只要这个复杂天线阵能分解为几个相同的子阵即可。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条