1) Rough-fuzzy sets
粗糙-模糊集
2) fuzzy rough sets
模糊粗糙集
1.
Level Characteristics of Rough Fuzzy Sets and Fuzzy Rough Sets;
粗糙模糊集与模糊粗糙集的截集性质(英文)
2.
The Studies of Fuzzy Rough Sets Theory:A Survey;
模糊粗糙集理论研究进展
3.
The fuzzy rough sets based on the cutsets and properties;
截集形式的模糊粗糙集及其性质
3) fuzzy-rough set
模糊粗糙集
1.
Intrusion detection method based on ICA and fuzzy-rough set;
一种基于ICA和模糊粗糙集的入侵检测方法
2.
Two attribute reduction algorithms based on fuzzy-rough set;
基于模糊粗糙集的两种属性约简算法
3.
An Attribute Reduction Algorithm Based on Fuzzy-rough Set and It s Application in Medical Image Area;
一种基于模糊粗糙集理论的算法及其在医学影像中的应用
4) fuzzy rough set
模糊粗糙集
1.
Entropy-based knowledge acquisition approach on fuzzy rough set;
一种基于信息熵的模糊粗糙集知识获取方法
2.
Investigation on the Feature Extraction from Medical Images and Its Classification Based on Fuzzy Rough Set Mathematical Morphology and Fractal Theory;
基于模糊粗糙集、数学形态学和分形理论的医学图像分类研究
3.
On the Covering Fuzzy Rough Sets Model;
基于覆盖的模糊粗糙集模型
5) fuzzy-rough set
模糊-粗糙集
1.
To solve this problem, the theory of fuzzy-rough sets is employed to improve the conventional k-NN method.
文中借助模糊-粗糙集理论来改进传统的k-近邻方法,并使用基于距离的邻城空间,以不经训练地确定适宜每个待分类文本的k-值,最后将所提方法和其他一些k-近邻方法进行了实验比较,结果表明模糊-粗糙集方法能够在一定程度上提高分类的精度和召回率。
2.
A new approach employing fuzzy-rough set theory and Fourier-Mellin transformation to solve HRRP recognition problem is presented in this paper.
提出一种基于模糊-粗糙集理论和傅里叶-梅林变换的高分辨雷达距离像识别方法。
6) rough-fuzzy set
粗糙模糊集
1.
Research on rough-fuzzy set theorybased decision support approach of component adaptation;
基于粗糙模糊集理论的构件适配决策支持方法的研究
2.
The roughness measure of rough-fuzzy sets;
粗糙模糊集的粗糙性度量
补充资料:模糊集
论域X={x}上的模糊集峎是指x中由隶属函数表征的元素全体,在实轴的闭区间[0,1]中取值,的大小反映 x对模糊集 A的从属程度。所讨论的全体对象组成的普通集合称为论域或空间。普通集合 X的元素是分明的,即对于任何元素只存在属于或不属X这两种情况,二者必居其一,而只有X的子集峎 才是模糊的。所以模糊集合通常是指模糊子集。L.A.扎德于1965年首先提出模糊集的概念。他指出,人思维的一个重要特点是按模糊集的概念归纳信息。随着计算机技术的发展,人们求解复杂问题的能力越来越强。在建立复杂问题的数学模型时,不可避免地要涉及事物的不确定性。不确定性包括随机性和模糊性。随机性是指事件发生与否的不确定性,已由概率论完善地加以研究。模糊性则指事物本身从属概念的不确定性。模糊集的概念一经提出,便在理论和应用两个方面得到迅速发展。模糊集理论已应用到系统科学、自动控制、信息处理、人工智能、模式识别、医疗诊断、天气预报、地震研究、农作物选种、体育训练、化合物分类以及经济学、心理学、社会学、语言学、生态学、管理学、法学和哲学等广泛领域。
隶属函数 设论域X={x},则映射
?
?确定X上的一个模糊子集峎,称为峎 的隶属函数,数称为x0对峎 的隶属度。
模糊子集峎完全由其隶属函数所刻划。接近1,表示x从属于峎 的程度很高;接近0,表示x从属于峎 的程度很低。特别当的值仅取闭区间的两个端值{0,1}时,模糊子集峎 便退化成为X 的一个普通子集。因此,模糊集是普通集合概念的推广。
基本运算 两个模糊子集之间的运算实际上就是逐点对隶属度作相应的运算。其基本运算可定义如下:
①等价关系:两个模糊集峎和是等价的,记为峎呏,是指当且仅当对任何x ∈X,成立。
②包含关系:模糊集峎包含于模糊集中,或称峎是的子集,记为峎 嶅,是指当且仅当对任何x ∈X,成立。
③补集:模糊集峍 是峎 的补集,是指当且仅当对任何x ∈X,成立。
④并集:两个模糊集峎 和的并集记为峎∪,定义为包含峎 和的最小模糊集。峎 ∪的隶属函数定义为,常简写。
⑤交集:两个模糊集峎和的交集峎∩定义为同是这两个集合的子集的最大模糊集。峎∩的隶属函数定义为,常简写成。
λ水平截集 它是模糊集与普通集合相互转化的一个重要概念。λ水平截集的定义为:设给定模糊集峎,对任意阈值λ∈[0,1],称普通集合
为峎 的λ水平截集。取模糊集峎 的λ水平截集Aλ,就是将隶属函数转化为特征函数:
分解定理 设峎是论域X 的一个模糊子集,Aλ是峎 的λ水平截集,λ∈[0,1],则下列分解式成立:
这里∪为并集运算符号,λAλ表示X的一个模糊子集,称为λ与Aλ的积,其隶属函数为:
分解定理也可以写成隶属函数的形式。分解定理把模糊集的问题化为普通集合论的问题来解,应用分解定理可把许多在普通集合论中成立的基本等式推广到模糊集中去。
扩展原理 设给定映射f:X →Y,则可把它扩展为映射愝:峎 →f(峎)。这里愝称为f的扩展,可简记为f。扩展原理可解释为峎 经过映射f后,其隶属函数可以无保留地传递过去,即经过映射后模糊子集峎 和f(峎)的论域X和Y中的相应元素的隶属度保持不变。若不是单值映射,则规定象的隶属度取最大值。扩展原理是扎德于1975年首先引入的,可作为公理使用。它把普通集合论的方法扩展到模糊集中去。分解定理和扩展原理是模糊集理论的基础。
参考书目
A.Kaufman, Introduction to the Theory of Fuzzy Subsets, Academic Press, New York,1975.
隶属函数 设论域X={x},则映射
?
?确定X上的一个模糊子集峎,称为峎 的隶属函数,数称为x0对峎 的隶属度。
模糊子集峎完全由其隶属函数所刻划。接近1,表示x从属于峎 的程度很高;接近0,表示x从属于峎 的程度很低。特别当的值仅取闭区间的两个端值{0,1}时,模糊子集峎 便退化成为X 的一个普通子集。因此,模糊集是普通集合概念的推广。
基本运算 两个模糊子集之间的运算实际上就是逐点对隶属度作相应的运算。其基本运算可定义如下:
①等价关系:两个模糊集峎和是等价的,记为峎呏,是指当且仅当对任何x ∈X,成立。
②包含关系:模糊集峎包含于模糊集中,或称峎是的子集,记为峎 嶅,是指当且仅当对任何x ∈X,成立。
③补集:模糊集峍 是峎 的补集,是指当且仅当对任何x ∈X,成立。
④并集:两个模糊集峎 和的并集记为峎∪,定义为包含峎 和的最小模糊集。峎 ∪的隶属函数定义为,常简写。
⑤交集:两个模糊集峎和的交集峎∩定义为同是这两个集合的子集的最大模糊集。峎∩的隶属函数定义为,常简写成。
λ水平截集 它是模糊集与普通集合相互转化的一个重要概念。λ水平截集的定义为:设给定模糊集峎,对任意阈值λ∈[0,1],称普通集合
为峎 的λ水平截集。取模糊集峎 的λ水平截集Aλ,就是将隶属函数转化为特征函数:
分解定理 设峎是论域X 的一个模糊子集,Aλ是峎 的λ水平截集,λ∈[0,1],则下列分解式成立:
这里∪为并集运算符号,λAλ表示X的一个模糊子集,称为λ与Aλ的积,其隶属函数为:
分解定理也可以写成隶属函数的形式。分解定理把模糊集的问题化为普通集合论的问题来解,应用分解定理可把许多在普通集合论中成立的基本等式推广到模糊集中去。
扩展原理 设给定映射f:X →Y,则可把它扩展为映射愝:峎 →f(峎)。这里愝称为f的扩展,可简记为f。扩展原理可解释为峎 经过映射f后,其隶属函数可以无保留地传递过去,即经过映射后模糊子集峎 和f(峎)的论域X和Y中的相应元素的隶属度保持不变。若不是单值映射,则规定象的隶属度取最大值。扩展原理是扎德于1975年首先引入的,可作为公理使用。它把普通集合论的方法扩展到模糊集中去。分解定理和扩展原理是模糊集理论的基础。
参考书目
A.Kaufman, Introduction to the Theory of Fuzzy Subsets, Academic Press, New York,1975.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条