1) Bayesian posterior probability estimation
贝叶斯后验概率估计
2) Maximum a Posterior Estimate(MAPE)
贝叶斯最大后验概率估计
3) Bayes posteriori probability
贝叶斯后验概率
4) Bayesian probability statistics
贝叶斯概率统计
5) empirical Bayes estimation
经验贝叶斯估计
1.
Empirical Bayes estimation was derived under square loss function and empirical Bayes estimations of the parameter were constructed for linear exponential distribution.
对线性指数分布在平方损失下获得了参数的贝叶斯估计,并构造了相应的经验贝叶斯估计,证明了所提出的经验贝叶斯估计是渐近最优的且有收敛速度O(n-q),其中q=(s-1)(λs-1)/[s(2s+1)],1/2<λ<1-1/(2s),s≥2是一给定的整数。
6) empirical Bayes estimator
经验贝叶斯估计
1.
In this paper,empirical Bayes estimator on binomial distribution is discussed.
讨论了二项分布的经验贝叶斯估计。
补充资料:贝叶斯公式
贝叶斯公式为利用搜集到的信息对原有判断进行修正提供了有效手段。在采样之前,经济主体对各种假设有一个判断(先验概率),设为,{}。
关于先验概率的分布,通常可根据经济主体的经验判断确定(当无任何信息时,一般假设各先验概率相同),较复杂精确的可利用包括最大熵技术或边际分布密度以及相互信息原理等方法来确定先验概率分布。
当采样得到样本值后,当事人对各假设的判断(后验概率)为
关于先验概率的分布,通常可根据经济主体的经验判断确定(当无任何信息时,一般假设各先验概率相同),较复杂精确的可利用包括最大熵技术或边际分布密度以及相互信息原理等方法来确定先验概率分布。
当采样得到样本值后,当事人对各假设的判断(后验概率)为
,= 1, 2, %26#8230;, (5.5)
在实际经济生活中,信息搜寻工作不是一次就完成的。当信息搜寻进行到某一阶段,设已进行了 次采样( =1,2,%26#8230;),此时经济主体对各假设的后验概率的认识为
=1, 2, %26#8230;, (5.6)
其中,表示在第次采样前对假设的判断,当 =1时即表示第一次采样前的先验概率,从而式(5.5)变成式(5.6)的一个特例,即,将其记为。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条