1) dynamic content caching
动态内容缓存
2) content cache
内容缓存
1.
Based upon the analysis of pastry routing algorithm,routing performance is improved by using content cache mechanism and route cache,and routing performance is mainly researched in the case of message different repeated rate.
在分析传统的Pastry路由算法基础上,采用内容缓存机制和路径缓存机制来改善路由性能,重点研究了不同消息重复率下的路由性能。
3) dynamic cache
动态缓存
1.
By doing some analyses of the APM based Web server,this paper uses the dynamic cache to reduce the response time of the server.
对基于APM的Web服务器架构进行分析,利用动态缓存来提高服务器的响应时间。
4) content caching server
内容缓存服务器
5) dynamic content
动态内容
1.
Research on performance improvement of Web applications based on separating static and dynamic content;
基于静、动态内容分离的Web应用性能优化技术的研究
2.
In order to produce summaries from dynamic content,we present the dynamic summarization as a time-biased multi-constrained summarization from classic summarization, where the formalization is presented with temporal analysis.
为了从不断更新的动态内容中生成文摘,本文提出了一种具有时序偏向的多文档文摘方法——动态文摘。
6) Dynamic memory
动态内存
1.
Based on the analysis of memory leak,the method overloads the allocation function and overrides the free function to store the allocation spot and trace the dynamic memory allocation.
方法在分析内存泄漏的基础上,通过重新实现动态内存分配和释放函数,记录内存分配的确切位置并跟踪动态内存的使用情况。
2.
The establishment and usage of dynamic arrays and management of dynamic memory in simulation were also discussed in detail and examples in turbo C were given in the programs.
并以Turbo C为背景,讨论了动态数组的建立、动态内存的管理以及动态数组的使用方法,给出了动态数组在系统可靠性与维修性仿真中的应用。
补充资料:CPU缓存
缓存的工作原理是当CPU要读取一个数据时,首先从缓存中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存。
正是这样的读取机制使CPU读取缓存的命中率非常高(大多数CPU可达90左右),也就是说CPU下一次要读取的数据90都在缓存中,只有大约10需要从内存读取。这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。总的来说,CPU读取数据的顺序是先缓存后内存。
目前缓存基本上都是采用SRAM存储器,SRAM是英文StaticRAM的缩写,它是一种具有静志存取功能的存储器,不需要刷新电路即能保存它内部存储的数据。不像DRAM内存那样需要刷新电路,每隔一段时间,固定要对DRAM刷新充电一次,否则内部的数据即会消失,因此SRAM具有较高的性能,但是SRAM也有它的缺点,即它的集成度较低,相同容量的DRAM内存可以设计为较小的体积,但是SRAM却需要很大的体积,这也是目前不能将缓存容量做得太大的重要原因。它的特点归纳如下:优点是节能、速度快、不必配合内存刷新电路、可提高整体的工作效率,缺点是集成度低、相同的容量体积较大、而且价格较高,只能少量用于关键性系统以提高效率。
按照数据读取顺序和与CPU结合的紧密程度,CPU缓存可以分为一级缓存,二级缓存,部分高端CPU还具有三级缓存,每一级缓存中所储存的全部数据都是下一级缓存的一部分,这三种缓存的技术难度和制造成本是相对递减的,所以其容量也是相对递增的。当CPU要读取一个数据时,首先从一级缓存中查找,如果没有找到再从二级缓存中查找,如果还是没有就从三级缓存或内存中查找。一般来说,每级缓存的命中率大概都在80左右,也就是说全部数据量的80都可以在一级缓存中找到,只剩下20的总数据量才需要从二级缓存、三级缓存或内存中读取,由此可见一级缓存是整个CPU缓存架构中最为重要的部分。
一级缓存(Level1Cache)简称L1Cache,位于CPU内核的旁边,是与CPU结合最为紧密的CPU缓存,也是历史上最早出现的CPU缓存。由于一级缓存的技术难度和制造成本最高,提高容量所带来的技术难度增加和成本增加非常大,所带来的性能提升却不明显,性价比很低,而且现有的一级缓存的命中率已经很高,所以一级缓存是所有缓存中容量最小的,比二级缓存要小得多。
一般来说,一级缓存可以分为一级数据缓存(DataCache,D-Cache)和一级指令缓存(InstructionCache,I-Cache)。二者分别用来存放数据以及对执行这些数据的指令进行即时解码,而且两者可以同时被CPU访问,减少了争用Cache所造成的冲突,提高了处理器效能。目前大多数CPU的一级数据缓存和一级指令缓存具有相同的容量,例如AMD的AthlonXP就具有64KB的一级数据缓存和64KB的一级指令缓存,其一级缓存就以64KB64KB来表示,其余的CPU的一级缓存表示方法以此类推。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条