说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 线性判别分析(LDA)
1)  Linear Discriminant Analysis(LDA)
线性判别分析(LDA)
2)  LDA
线性判别分析(LDA)
1.
In this work, we developed a new approach by combining a new feature representation involving scores of generalized base properties combined with auto cross covariance (ACC), linear discriminant analysis (LDA) and support vector machines (SVM) to predict chromatographic retention time of DNA, and to identify human miRNAs, vertebrate promoters , human exons.
本文通过一种新的途径,即以广义碱基性质得分(SGBP)结合自交叉协方差(ACC),线性判别分析(LDA)和支持向量机(SVM)建模,进行了DNA色谱保留指数、人类miRNA、脊椎动物启动子和人类蛋白质编码基因预测或识别,采用自检验、交互验证、外部验证等方法验证模型的预测能力。
2.
(3)This paper introduced theory of LDA algorithm and its application to face recognition and acquired a great many experiments.
(3)介绍了线性判别分析(LDA)人脸识别方法并且得到一些有意义的结论;并且对该方法进行了改进。
3)  LDA
线性判决分析(LDA)
4)  linear discriminant analysis(LDA)
线性鉴别分析(LDA)
5)  PCA/LDA Fisher Discriminant Ayalysis
PCA/LDA Fisher判别分析
6)  Linear discrimination analysis
线性判别分析
1.
A robust dynamic visual feature extraction method based on Bayesian tangent shape model(BTSM) and linear discrimination analysis(LDA) is proposed.
引入一种基于贝叶斯切线形状模型(BTSM)的口形轮廓特征提取和基于线性判别分析(LDA)的视觉语音动态特征提取方法,该特征充分体现了口形特征变化的动态性,消除了直接口形轮廓几何特征的冗余。
补充资料:线性判别函数
      统计模式识别中用以对模式进行分类的一种最简单的判别函数。在特征空间中,通过学习,不同的类别可以得到不同的判别函数,比较不同类别的判别函数值大小,就可以进行分类。统计模式识别方法把特征空间划分为决策区对模式进行分类。一个模式类同一个或几个决策区相对应。每个决策区对应一个判别函数。对于特征空间中的每个特征向量x,可以计算相应于各个决策区的判别函数gi(x),i=1,2,...,c。用判别函数进行分类的方法就是:若对所有的i均有gi(x)≥gi(x),则把x分为第j类,记成r(x)=j。对于线性判别函数,gi(x)的函数形式为
  
   gi(x)=Wi0+Wi1x1+Wi2x2+...+Widxd式中x1,x2,...,xd是输入模式特征向量的各个分量,Wi0,Wi1,...,Wid组成与第i类对应的权向量,它们的大小反映与它们对应的特征向量的各个分量在确定第 i类判别函数值的重要程度。
  
  特征空间中分别与第i类、第j类相对应的区域之间的决策边界形式为
  
  对于一个两类分类器,可以计算g(x)=g2(x)-g1(x)。若g(x)≥0,则r(x)=2,相应于决策区R2。若g(x)<0,则r(x)=1,相应于决策区R1。这一结果可写成
  
  
  
   式中sgn(Z)是符号函数,在Z≥0时等于1,在Z<0时等于-1。这样一个两类线性分类器具有图中的形式。
  
  人们已研究出多种求取决策边界的算法。线性判别函数的决策边界是一个超平面方程式,其中的系数可以从已知类别的学习样本集求得。F.罗森布拉特的错误修正训练程序是求取两类线性可分分类器决策边界的早期方法之一。在用线性判别函数不可能对所有学习样本正确分类的情况下,可以规定一个准则函数(例如对学习样本的错分数最少)并用使准则函数达到最优的算法求取决策边界。用线性判别函数的模式分类器也称为线性分类器或线性机。这种分类器计算简单,不要求估计特征向量的类条件概率密度,是一种非参数分类方法。
  
  当用贝叶斯决策理论进行分类器设计时,在一定的假设下也可以得到线性判别函数,这无论对于线性可分或线性不可分的情况都是适用的。在问题比较复杂的情况下可以用多段线性判别函数(见近邻法分类、最小距离分类)或多项式判别函数对模式进行分类。一个二阶的多项式判别函数可以表示为
  
  与它相应的决策边界是一个超二次曲面。
  
  参考书目
   R.O.Duda and P.E.Hart,Pattern Classificationand Scene Analysis,John Wiley & Sons,New York,1973.

  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条