1)  MFC
微软函数库
1.
This paper introduces how to create a reusable simulator software framework in MFC based on object oriented thought.
该构架设计运用面向对象思想,结合MFC(微软函数库)对象框架所具有的模块化特点,达到了灵活可复用的目的。
2)  Microsoft
微软
1.
On Theory of Enterprise Location Based on Why Microsoft Doesn t Relocate its Headquarter;
从微软为什么不搬家看企业区位选择理论的新发展
2.
Situation of Internet Security and Strategy of Microsoft;
互联网安全近况与微软安全策略
3.
A Detailed introduction to Microsoft Windows Security Patch (MS04-015);
详解微软MS04-015漏洞
3)  Microsoft agent
微软代理
4)  MFC library
微软类库
5)  Microsoft SQL Server2000
微软SQL Server2000
6)  Microsoft Windows
微软Windows
参考词条
补充资料:高斯函数模拟斯莱特函数
      尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
  
  
  式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
  
  
  其变量与STO有相似的定义;Ngi是归一化常数:
  
  
  rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
  
  ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。