说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 类覆盖问题
1)  class cover problem
类覆盖问题
1.
An extended class cover problem is presented and then it is reduced to a constrained multi-objective optimization problem.
提出一种扩展的类覆盖问题,并将它归纳为一个有约束的多目标优化问题模型,该问题的解决对构建强壮的分类识别系统具有重要的意义。
2)  coverage problem
覆盖问题
1.
The barrier coverage problem is a special coverage problem and plays very important role in target tracking.
覆盖问题是传感器网络中的基础性问题,着重研究了一类特殊的覆盖问题——栅栏覆盖问题。
2.
An energy-efficient heuristic mechanism is presented to obtain the optimal solution for the coverage problem in sensor networks.
提出了一种解决无线传感器网络覆盖问题的能量有效性启发式机制。
3.
Coverage problem is a fundamental issue in the researches of sensor networks.
覆盖问题是传感器网络研究中的一个基础课题,判定感兴趣的区域是否被一组给定的传感器节点完全覆盖,在监控等传感器网络的许多应用领域中具有重要意义。
3)  bin covering problem
箱覆盖问题
1.
As the extension of bin covering problem(BCP),a bin covering problem with rejection is proposed in this paper,in which n items are given,each with a capacity and cost,and unlimited bins with equal capacity.
作为对装箱覆盖问题的推广,提出带拒绝的装箱覆盖问题。
4)  k-coverage problem
k-覆盖问题
5)  covering Steiner problem
覆盖Steiner问题
1.
Algorithms for some cases of group and covering Steiner problems;
若干情形分组和覆盖Steiner问题的算法
6)  P-coverage problem
p覆盖问题
补充资料:函数逼近,函数类的极值问题


函数逼近,函数类的极值问题
ions, extremal problems in function dasses approximation of ftinc-

  】f,r,(r’)一f(r,(r‘’)}《M】r’一r“}“(r’,,“。I一1,!])的f任Cr!一1,l]组成的函数类,则对于n一1次代数多项式子空间贝了在!一1,l]上所作的最佳一致逼近,下列关系式成立: 悠二E‘MH。,”‘”)‘一粤,‘6) ,、_一二,二,,,,、~刀、M,二、。,,r,、忽”厂‘““‘M附rH“,贝:’‘一誉{’·‘万一‘’‘““‘,‘7, r=l,2,…,将这些结果与周期情形下的相应结果进行比较是有所裨益的.当,=1时,(6),(7)的右端分别等于M凡和M人r+1.如果放弃对最佳逼近多项式的要求,那么就可以获得较强的结果,这些结果实质上改善了在!一1,l]端点处的逼近并保持了整个区间上的最佳渐近特征.例如,对任何f6MH‘,存在代数多项式序列Pn以t)任灾矛,使得当n~的时,下列关系式在t6!一1,l]上一致成立:、f(!)一。。,‘)、·:{{;杯}“二‘一,!- =E(MHa,哭聋)。【(l一tZ)a·‘2+o(l)1.对M评百,(r=1,2,…)也有类似的结果(见【川).关于(最佳及插值型)样条逼近给定在区间上函数类的问题,若干精确及渐近精确的结果(主要是对于低阶样条)已公诸于世(见1151). 就(积分度量下的)单边逼近而言,关于上述函数类用多项式和样条进行最佳逼近的误差估计也已得到了一系列精确的结果(见【14]).在推导这些结果的过程中,实质上利用了最佳逼近在锥约束下的对偶关系. 对给定的函数类叨,寻求其(固定维数的)最佳逼近工具将导致确定所谓的宽度(widih)问题,亦即确定(参考(l),(3)) 心(,之,幻=运fE(叭,贝,)x, 贝即 d沁(叭,X)==运f者(叭,叽、),, 田阳(其中下确界取自X的所有N维子空间灾N(及其平移)),以及确定实现这些下确界的(最佳)极子空间问题.心与d万的上界可由E(叨,灾)x和g(叭,叭)x分别给出,对于具体的子空间贝,来说,E(绷,灾)x和扩(绷,哭N)x是已知的.宽度问题中的主要困难是获取下确界.在某些场合下,可借助于拓扑中的Borsuk对映定理丈见18』)而得到这些下确界.在用(。一1阶三角多项式)子空间,荔一,或(关于结点人司。亏数为1的。阶样条)子空间s皿解决函数类M吼及周期函数类wrH“的最佳逼近问题时,已知的上确界E(叭,巩、)x几乎在所有的情况下同时也就是这些函数类的心值.此外,对周期函数类还有姚。一1=姚。.特别有(见[7],【8],【1 51,【16」)dZ,l(附妥,C)=dZ。(W蕊,C)二dZ。一(W下.L一)= =dZ。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条