1) cumulate generating function (CGF)
累积生成函数
2) cumulant generating function
累积量生成函数
3) cumulative generating function
累计生成函数
4) product of generating function
生成函数积
5) accumulation function
累积函数
1.
Track initialization based on fuzzy accumulation function
基于模糊累积函数的航迹起始问题研究
6) knowledge accumulation function
知识累积函数
补充资料:生成函数
生成函数
generating function g?generatrix
【补注】在形式幂级数意义下的生成函数也时常使用.生成函数的其他常用形式有指攀牛感甲攀(expo卿t运l罗nc份t】ng丘metio们) _‘.异a_(x)wn 厂.义,W,二2— 门二0柞飞以及(形式)l玉逸刘以级数(O访ehlet senes) _畏a_(x飞 厂砚X .5,二2— 月=In通常可以证明对这些生成函数作运算而不考虑其收敛性是正确的.踵集译李乔校生成函数【罗搜犯位屯如袱如.或郎优mtnx;。即113.及-,“a“中y“‘,或re哪TpHca],亦称母甲攀 数列或函数序列弋a。(x)}的生成函数是幕级数的和 r(x,w)二艺a。(x)w·, 扣=0它的收敛半径是正的.如果生成函数为已知,则解析函数的Taylo:系数的性质可用来研究序列麦a。(:)}.在某些条件下,对于在某个区间(a,b)上与权函数h(x)正交的多项式{尸。〔x)},存在生成函数 r(x,w)二艺Pn(x)w·,x。(a,6). 月=0对于经典正交多项式(cl侧骆ia习。d加即mlpo」yn om边Is),生成函数可以用权函数h(x)显式表示,它用于计算这些多项式在个别点上的数值,还用于导出这些多项式与其导数之间的一些恒等关系式. 在概率论中,一个以概率{p;(。)}取整数值{。}了的随机变t(m司omvanable)古的生成函数定义为 ‘t厂,、一勺n了,、,。,,一或1 厂t‘,“)二。么共气”)艺,Jz{诀‘·利用生成函数可以计算亡的概率分布,它的数学期望和方差是: ,。(。卜青F‘月〕(;,0),:;一r,(;,1), D心=F”(七,l)+F’(老,1)一「F‘(七,l)〕,.随机变量七的生成函数也可定义为随机变量了的数学期望,即F(:,心)二巨z‘.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条