1) topological order
拓扑顺序
2) topological sort
拓扑排序
1.
New topological sort algorithm based on adjacency matrix;
一种新的基于邻接矩阵的拓扑排序算法
2.
Activity On Vertex Network topological sort using Dual Channels Delayed Pulse Coupled Neural Networks;
双通道时延脉冲耦合神经网络的AOV-网拓扑排序
3.
The Design and Implementation of Parallel Topological Sort Algorithm;
并行拓扑排序算法PTSA的设计与实现
3) topological sorting
拓扑排序
1.
Application of Topological Sorting Algorithm in Educational Administration System;
拓扑排序算法在教务管理系统中的应用
2.
Topological Sorting Method of Interval Number Complementary Judgment Matrix;
区间数互补判断矩阵的拓扑排序方法
3.
Authors presented a new algorithm for logit network loading problem to improve the definition of reasonable routes in DIAL s algorithm based on topological sorting.
当道路网络存在环路时,算法根据从节点到讫点的阻抗的降序来删除节点上游没有遍历的路段,从而将有环网络变为无环网络并根据拓扑排序确定的节点计算顺序来计算路段权重和流量。
4) topological sequence
拓扑序列
1.
Activity on vertex network(AOV network)can present orders of all sub_-engineerings of one engineering,use topotogical sort algorithm to work out the linear sequence of all sub_-engineerings called topological sequence.
以顶点表示活动的网络(AOV网)可用来表示整个工程中各个子工程的先后次序制约关系,利用拓扑排序算法能求得子工程的线性序列———拓扑序列。
5) topology-preserving mapping
拓扑有序
6) order topology
序拓扑
1.
This paper researched the interval topology and order topology of MV algebra as well as the tightness,connectedness,completeness and the total-orderness of MV algebra.
研究了MV代数的区间拓扑和序拓扑及MV代数下的拓扑紧性、连结性、完备性和全序性。
2.
The theorems about two variables operation continuity under its order topology in effect algebra are also obtained.
本文分别讨论了效应代数、格效应代数、全序效应代数上二元运算的序连续性,并对效应代数上二元运算在序拓扑意义下的连续性进行了刻画。
补充资料:拓扑结构(拓扑)
拓扑结构(拓扑)
topologies 1 structure (topology)
拓扑结构(拓扑)【t哪d哈eal structure(to和如罗);TO-no“orHtlec~cTpyKTypa」,开拓扑(oPen to和fogy),相应地,闭拓扑(closed topofogy) 集合X的一个子集族必(相应地居),满足下述J胜质: 1.集合x,以及空集叻,都是族。(相应地容)的元素. 2。(相应地2劝.。中有限个元素的交集(相应地,居中有限个元素的并集),以及已中任意多个元素的并集(相应地,居中任意多个元素的交集),都是该族中的元素. 在集合X上引进或定义了拓扑结构(简称拓扑),该集合就称为拓扑空间(topological sPace),其夕。素称为.l5(points),族份(相应地居)中元素称为这个拓扑空问的开(open)(相应地,闭(closed))集. 若X的子集族份或莎之一已经定义,并满足性质l及2。。(或相应地l及2衬,则另一个族可以对偶地定义为第一个集族中元素的补集族. fl .C .A二eKeaH及pos撰[补注1亦见拓扑学(zopolo群);拓扑空l’ed(toPo1O廖-c:,l印aee);一般拓扑学(general toPO】ogy).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条