1) constrained distance transformation
约束距离变换
3) constraint distance
约束距离
1.
In DBCluC+,the algorithm used network topology to model the facilitator and added a attribute named width of access point,so it used the constraint distance to replace the Euclidean distance or obstacle distance in DBCluC to as the criterion of the dissimilarly.
该算法在DBCluC算法基础上,采用网络拓扑结构建模通达对象,并增加通达对象访问点的宽度属性,从而采用约束距离(constrained distance)代替简单的欧几里德距离或障碍距离(obstacle distance)作为相异度的度量标准。
4) distance resistance function
距离约束项
5) long-distance binding
长距离约束
1.
This article attempts to prove that when Ziji lies i n position of objective,the verb bound in the domain has restraint funtion to Zi ji long-distance binding.
本文试图证明"自己"位于宾语位置时,动词(约束域①内的动词)对"自己"长距离约束有制约作用。
2.
The binding problem of ziji does not totally belong to syntax, and no ideal syntactic theory has been found to completely solve the problem of long-distance binding of the Chinese reflexive zij
目前还没有一种理想的句法理论可以在GB框架下圆满地解决汉语反身代词“自己”的长距离约束问题 。
3.
It is widely assumed that Chinese reflexive ziji is an anaphor (in the sense of having to be bound in a certain syntactically defined domain) with three characteristic properties: the long-distance binding, subject orientation, the blocking effect, which attracts the attention of linguists.
汉语“自己”的独特性主要表现在以下几个方面:它可以接受长距离约束(long-distance binding),似乎在寻求先行语(antecedent)时不受什么句法限制(Xu 1993);在寻求先行语时还表现出英语反身代词回指时所不具有的主语倾向性(subject orientation);“自己”在进行长距离约束时存在阻断效应(blocking effect)。
6) long distance binding
长距离约束
1.
With Principle A of the Binding Theory as its theoretical backdrop, this paper is mainly devoted to a discussion of various modification schemes within the framework of the Binding Theory to remedy the inadequacies of this principle, revealed by the "rebellious" syntactic behavior of the Chinese anaphor "ziji" known as "long distance binding".
本文在约束理论第一原则 (约束原则A)的理论背景下 ,针对汉语照应语“自己”允许“长距离约束”的叛逆行为及由此而暴露的该原则的不足 ,试图在约束理论的框架内探讨为弥补不足所提出的各种修正方案 ,最后尝试着提出了有关“先行语优选假设”、“先行语优选顺序”和“阻断效应鉴别式”的修正思
补充资料:Radon变换和逆Radon变换
Radon变换和逆Radon变换
X线物理学术语。CT重建图像成像的主要理论依据之一。1917年澳大利亚数学家Radon首先论证了通过物体某一平面的投影重建物体该平面两维空间分布的公式。他的公式要求获得沿该平面所有可能的直线的全部投影(无限集合)。所获得的投影集称为Radon变换。由Radon变换进行重建图像的操作则称为逆Radon变换。Radon变换和逆Radon变换对CT成像的意义在于,它从数学原理上证实了通过物体某一断层层面“沿直线衰减分布的投影”重建该层面单位体积,即体素的线性衰减系数两维空间分布的可能性。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条