说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 动态随机交通分配
1)  dynamic stochastic traffic assignment
动态随机交通分配
2)  stochastic dynamic assignment
随机动态交通分配
3)  stochastic traffic assignment
随机交通分配
1.
Multilevel orientation algorithm for searching efficient paths in stochastic traffic assignment;
随机交通分配中有效路径的分层定向算法
2.
The determination of efficient paths in the transportation network is a key technology of stochastic traffic assignment.
该算法可以与各类随机交通分配模型结合,并为交通规划人员提供有力工具。
3.
This paper compares three different types of network paths which are used in stochastic traffic assignment, and presents a new method for implementing stochastic assignment excluding all cyclic flows.
对用于随机交通分配的三种不同路径进行了比较和分析 ,研究了无环简单路径的寻求方法和无环简单路径集上的随机交通分配问题 。
4)  dynamic traffic assignment
动态交通分配
1.
Stability analysis of switching rate system in the dynamic traffic assignment;
动态交通分配中一类转换率系统的稳定性
2.
Research on Link Travel Time Functions for Dynamic Traffic Assignment;
面向动态交通分配的路段费用函数建模研究
3.
Study of link travel time functions for dynamic traffic assignment model based on computer simulation;
动态交通分配中道路阻抗模型的研究
5)  Dynamic Traffic Assignment(DTA)
动态交通分配
6)  dynamic traffic assignment
动态交通流分配
1.
Multi-user dynamic traffic assignment model and relevant algorithm;
多用户动态交通流分配模型及算法研究
2.
Through analyzing behavioral assumptions based on instantaneous and real-time travel time,a multi-user dynamic traffic assignment model is proposed.
通过对动态交通网络中瞬时反应型和预测型出行者行为假设的分析,本文提出了将二者结合并增加固定路线出行行为假设的多用户动态交通流分配模型。
补充资料:随机分配


随机分配
random allocation

随机分配lr田司.旧au鱿ati阅;e二y,滋一。ep幻Me川e-““,」 把,:个粒子随机分配到N个单元的一种概率模型.在最简单的概型中,粒子是等可能且彼此独立地被分配的,因此每个粒子可以以概率l/N落到任一确定的单元.令#,=拼,(n,N)为分配后恰有r个粒子的单元数,又设o蕊;,<…<:、.其母函数 中(粼义l,…,支,)= 一,氰、.泉‘_。半、 xp{召,,=k,,…,拼r‘=k,}x李,…x穿·有如下形式: 小(粼x、,…,x,)二 「,,,_〕刀 二le一十—饭X,一l,十‘,‘十—电X_一1〕! L r.lr::」 (l)母函数(l)可用来计算拜,的矩以及研究其分布当n,N一的时的渐近性质.这些渐近性质很大程度上是由参数,二n/N一一个单元中粒子的平均数的性态所确定的.如果n,N一的且“=o(N),那么对于固定的r和t, E拼,一NPr(:),Cov(拜r,拼,)一Na,:(:),(2)其中尸r(:)=:re一“/;!, 叮r:(“)=一,,(,)「。,‘一,。(:)一,r(:卜恤二业上匕竺乏1, L’一”一“」而咨,:为Kro贺c址r符号.按照召,当N,。~田时不同类型的渐近行为,可以分辨出五个区域. 中心区域(cent司d0IT坦in)对应于“二九/N减1.对应于 “~的,E召,~又,O<又<的的区域称为右:区域(巧沙t:一do~),而对应于 “~的,任拜,~的则为右中r区域(力乡It inter皿diate;一do~).对于:)2,左:区域(Ieft卜dorr以m)对应于 “~O,E拜,~几,0<又<印,而左中r区域(left inter服d运te:~dolnain)对应于 比~0,E尸,~的.对于;二O,1,则其左和左中r区域与其相应的2区域是相同的. 在等可能概型的情形,在右r区域拜:有渐近PJss叨分布(Poisson distribution).当。)2时,这在左r区域也是成立的,而当r=O或r二1时,“。一N十n与(n一召、)/2依极限有Poisson分布.在左中和右中r区域,拜,有渐近正态分布(norm目distrib丽on).在中心区域则有一个关于拼r,,…,拼,』的多维渐近正态性定理,其极限正态分布的参数由渐近公式(2)确定(见11]). 如果。个粒子彼此独立地分配到N个单元,每个粒子落到第j个单元的概率等于。,,艺作,a,一1,这种分配称之为多项式的(polynolnjal).对于一个多项式分配,也可以引进中心、右和左区域,且极限正态与Poisson定理成立(见11],汇3」).利用这些定理,可以计算空盒检验( elrlPty一boxes test)的功效〔又见统计检验的功效(power of a statisticai test))·设七.,…,亡。为有连续分布函数F(x)的独立随机变量(假设H。).对立假设H,则对应于另一分布函数F,(x).选择点z。=一的C所确定,这时H。被拒绝.因为在H。之下,拼。有由均匀分配定义的概率分布,而在H.之下,它有一个由多项分配定义的分布,利用关于拜。的极限定理就能计算这个检验的功效尸{拼。>CIH,}(见[21). 在其他概型中,粒子被分成大小为m的组,并且假定在把它们配置到N个单元中时,同一组的两个粒子不会落人相同的单元,不同组的位置则是独立的.如果每个组的所有(票)个位置是等可能的且组数”~的,那么对于有界或弱增的m,#,也有渐近的正态或POisson分布. 与概率论一整套的组合间题(随机排列,随机映射,树,等等)相联系,分配概型有着种种可能的推广(见11」).【补注】本条所涉及的问题常称为占有问题(occu-pallcy prob】en”):它们等价于瓮l’q题(urn problem)(见【AI]及瓮模型(urnm以lel)).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条