1) vector Rayleigh diffraction integration
矢量瑞利衍射积分公式
2) Rayleigh diffraction integrals
瑞利衍射积分公式
1.
By using the angular spectrum representation method and Rayleigh diffraction integrals,the propag.
对非傍轴光束的研究方法作了总结,使用角谱表示法和瑞利衍射积分公式对非傍轴矢量高斯光束的传输作了分析和比较。
3) Rayleigh diffraction integral
瑞利衍射积分
1.
Based on the Rayleigh diffraction integral and without use of the usual approximation,Rλ(λ is wavelength),an exact analytical expression for the axial intensity of nonparaxial Gaussian beams diffracted by a small circular aperture is derived.
基于瑞利衍射积分,不使用通常的近似Rλ(λ为波长),推导出非傍轴高斯光束通过小孔光阑衍射的轴上光强的精确解析表达式。
4) Rayleigh-Sommerfeid diffraction integrals
矢量瑞利-索末菲衍射
1.
Based on the vectorial Rayleigh-Sommerfeid diffraction integrals,analytical expressions of Gaussian beam with unity amplitude propagating through a thin lens followed by one small circular aperture are derived,for the non-paraxial and paraxial approach.
基于矢量瑞利-索末菲衍射理论,推导出了高斯光束通过微小圆形透镜-光阑系统的非傍轴及傍轴传输的近场和远场解析表达式。
5) vectorial Debye diffraction integral
矢量Debye衍射积分
6) Rayleigh-Sommerfeld diffraction integral
瑞利-索末菲衍射积分
1.
According to the theorems of holography and linear system,the reconstructing methods of the off-axis lens-less Fourier transform hologram by Fresnel diffraction formula and by the convolution method based on Rayleigh-Sommerfeld diffraction integral were studied through simulation.
根据全息理论和线性系统理论,研究了利用菲涅耳近似法和基于瑞利-索末菲衍射积分的卷积法数值重建离轴无透镜傅里叶变换全息的方法,并做了计算机模拟。
补充资料:瑞利公式
分子式:
CAS号:
性质:对于粒子尺寸比入射光波长小得多(≤λ/20)的稀溶胶,散射光服从以下的瑞利公式:iθ是单位散射体积在散射角为θ、距离为r处的散射光强,λ是入射光在介质中的波长,n1和n0分别是分散相与介质的折射率,N为单位体积中的散射粒子数,V是散射粒子的体积。瑞利公式表明,胶体料子的散射光强与入射光波长的四次方成反比,分散相与分散介质的光学性质差别越大,散射越强烈。
CAS号:
性质:对于粒子尺寸比入射光波长小得多(≤λ/20)的稀溶胶,散射光服从以下的瑞利公式:iθ是单位散射体积在散射角为θ、距离为r处的散射光强,λ是入射光在介质中的波长,n1和n0分别是分散相与介质的折射率,N为单位体积中的散射粒子数,V是散射粒子的体积。瑞利公式表明,胶体料子的散射光强与入射光波长的四次方成反比,分散相与分散介质的光学性质差别越大,散射越强烈。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条