说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 低噪声系数
1)  low noise figure
低噪声系数
2)  NRC (noise reduction coefficient)
噪声降低系数
3)  noise figure
噪声系数
1.
Automatic gain control technique in microwave noise figure analysis;
微波噪声系数分析中自动增益调整技术
2.
Noise figure measurement within high temperature superconductor mixer;
高温超导混频器噪声系数测量
4)  noise factor
噪声系数
1.
The development of a special noise factor tester
一种专用噪声系数测试仪的研制
2.
The noise factor analyzer’s operation principle and the basic noise factor measurement method, Y factor method, are described.
论述了噪声系数分析仪的工作原理和噪声系数最基本的测量方法——Y因子法。
3.
After analyzing some factors influencing the receiver performance,for example,noise factor,frequency conversion loss,dynamic range,isolation degree,mixing distortion.
从混频器的基本概念出发,分析了混频器设计中的关键技术,如噪声系数、变频损耗、动态范围、隔离度、混频失真等对接收机性能的影响,并从工程角度出发,指出在工程设计中应注意的要点。
5)  noise coefficient
噪声系数
1.
Method to reduce the uncertainty of noise coefficient measurement;
一种减小噪声系数测量不确定度的方法
2.
Based on discussion and analysis of the noise coefficient of multilevel amplifier,an amplifier with low noise was introduced.
本文在对多级放大噪声系数理论分析讨论的基础上,介绍了一种低噪声μV信号放大器的设计与制作。
3.
The way to reduce total noise coefficient is indicated for multiple amplifier.
本文用混合π型噪声模型 ,讨论了共发射极放大器的主要噪声来源 ,最佳源电阻和最小噪声系数 ,指出在多级放大器中降低总噪声系数的方向 ,设计出了一种低噪声偏置电路 。
6)  NF
噪声系数
1.
The simulate transponder s key techniques such as NF,gain distribute,and EMC characteristics are analyzed in detail.
在介绍转发器的结构、特点的基础上,对转发器噪声系数、增益分配、电磁兼容等转发器设计中的关键问题进行分析,并给出某一采用一次变频体制方案的Ku波段模拟转发器的系统实现方法。
2.
In band 935~960MHz,power gain isgreater than 16dB, the noise figure (NF) of the LNA is less than 2.
在935~960MHz频带内,LNA功率增益大于16dB,阻抗匹配系数S11小于-18dB,噪声系数(NF)小于2。
3.
97dB,the noise figure(NF) is less than 2.
97dB,阻抗匹配系数S11小于18dB,噪声系数(NF)为2。
补充资料:低噪声微波技术
      降低微波接收设备内部噪声的技术。其主要内容是微波低噪声(固态)器件技术和相应的微波电路技术,还涉及低温物理、量子力学等学科。微波波段接收设备的性能主要受其内部噪声的影响,外差式接收机的内部噪声取决于低噪声前端,可用噪声系数F(分贝)、有效噪声温度Te(K)或噪声量度M(分贝)等表征。接收设备的外部噪声取决于天空噪声温度极限,频率范围为0.1~1吉赫的外部噪声主要是银河系噪声;1~10吉赫范围内主要是宇宙背景噪声(3.4K),10吉赫以上则取决于大气噪声(对外空系统取决于宇宙背景噪声和光子噪声)。前端的有效噪声温度应与具体条件下作用于其输入端的外部噪声温度(主要是天线噪声温度Ta)相当。
  
  研究概况  随着半导体技术的发展,半导体器件以其明显的优越性逐步取代了电子管,因此,低噪声技术基本上就是固态低噪声技术。低噪声技术研究起始于40年代用于雷达的点触式半导体二极管混频器。自1958年变容二极管问世后,60年代起参量放大器(参放)得到广泛应用,同期还相继研制成量子放大器和隧道二极管放大器(隧放)。60年代中期,双极型晶体管的使用频率提高到微波波段,制成了L波段低噪声双极型晶体管放大器。1971年制成了微波砷化镓肖特基势垒栅的场效应晶体管,使低噪声技术进入了一个新的阶段。场效应晶体管放大器在高频率和低噪声方面显著优越于双极型晶体管,迅速取代了隧放和行波管放大器,且有逐步取代参放之势。现代在短毫米波段,二极管混频器几乎是唯一实用的低噪声检测手段。自60年代以来,对利用超导的约瑟夫逊结器件制成低噪声混频器和参放不断进行探索研究,已显示其在亚毫米至远红外波段的优越性(见超导性的微波应用)。
  
  应用  低噪声微波技术在通信、雷达、遥感、电子对抗等系统以及射电天文、精密测量等应用中起着重要的作用。在这些方面,除了低噪声指标之外,往往还须满足功率增益、频带宽度、线性工作范围、脉冲功率容量、抗电磁干扰、抗核辐射,以及适应恶劣环境的能力等技术要求。
  
  
  性能与水平  80年代前期的微波低噪声器件性能见图。量子放大器在 1~30吉赫频率有最低有效噪声温度(接近宇宙背景温度),但必须致冷至4K,技术复杂,设备庞大而昂贵,且频带很窄(相对带宽小于 1%)。参放提供常温下最低的有效噪声温度,致冷于20K还可进一步降低,其相对带宽可达20%,但在毫米波段性能和应用因泵源尚难解决而受到限制。在 1吉赫以下,双极型晶体管常用于廉价的放大器,而在1吉赫以上则广泛应用场效应晶体管放大器,它在常温下的噪声性能接近参放,在20K时可与参放媲美。80年代前期,场效应晶体管进入毫米波段(实现60吉赫噪声系数 7.1分贝,相应增益5.5分贝)。场效应晶体管具有稳定性好、线性工作范围大、频带宽(可实现信频程,甚至0~18吉赫的宽带平坦特性)、体积小、致冷简易等优点,但抗烧毁和耐峰值功率的能力比参放约低一个数量级。晶体管放大器适于制作微波集成电路。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条