1) Image feature and representation
图像特征与表示
2) schematic representations and pictorial representations
图式表征与图像表征
1.
According to different relationships between visual-spatial representations and success in mathematical problem solving,two types of visual-spatial representations were distinguished: schematic representations and pictorial representations.
根据视觉空间表征与成功解题之间的不同关系,视觉空间表征可分为图式表征与图像表征。
3) image representation and retrieval
图像表示与检索
4) feature expressing and matching
特征表示与匹配
5) feature representation and extraction
特征表示与提取
6) image feature representation
图像特征表达
补充资料:图像表示
图像信息在计算机中的表示和存储方式。图像表示和图像运算一起组成图像模型,是模式分析中的重要组成部分。可以在图像信息的不同等级上对图像进行表示。最基本的物理图像是根据矩形网格抽样原理从连续图像域中抽取二维灰度阵列(矩阵)得到的。也可以用长向量表示二维灰度矩阵,它是按列(或行)扫描灰度矩阵,把下一列(或行)的头和前一列(或行)的尾相接而成。它们的线性可逆变换同样可以用来表示图像。图像的每一行由行程(具有同一灰度的邻近像元集合)序列所组成,因此也可以用行程长度编码(见图像编码)表示图像。另一种表示图像的方法是四分树,它是用树的根节点表示整个图像:假使图像的灰度都取同一数值,就把根节点标上该灰度,并停止产生后继节点,否则就对根节点加入四个后继节点,每个后继点表示图像的一个象限。假使其中的某个象限有同一灰度,就把和它对应的节点标上该灰度,并停止产生该节点的后继节点,否则重复上述产生四个后继节点的过程,直到所有的节点所对应的区域灰度都相同为止。假使图像的大小是2k×2k,若把根节点作为0级节点,则第k级节点就和一个像素相对应。这种表示方法能够减少存储量而且有相应的算法进行图像的基本运算,如邻域查找等。其缺点是图像的相对位移会使四分树表示发生改变,从而很难从四分树表示判断两幅图像是否全同。另一种图像表示方法是在抽取对象的边界或区域的基础上,对边界或区域进行描述,例如从边界上任意点出发沿边界进行跟踪,用数字表示跟踪方向,从而得到边界的数字链码表示。也可以用形状分析的方法表示对象的区域(见图像分割)。
更高一级的图像表示是描述图像中的物体和物体间的关系。这样一种图像常常称为逻辑图像。图像中的物体或组成部分可以用区域或一组几何特性来表征,还可以详细说明组成部分的位置和其他非几何的属性。一般用图表示逻辑图像,图中节点表示物体的组成部分,每个节点用组成部分的有关性质作成的表作为标签,必要时还可以用指针指向低一级水平的图像数据结构(如形成该区域的灰度阵列数据)。节点之间的有向弧用来表示相应组成部分之间的关系,用关系性质作成的表作为弧的标签。例如,图b给出由三个矩形块所组成的图像(图a)的逻辑图像表示。此外,也可以用文法形式表示物体之间的关系(见模式文法)。
为了使各种表示在同一系统中同时存在,就需要有相应的算法把一种表示转换为另一种表示,例如把二维阵列变换为四分树,或从四分树表示变换为二维阵列,以及从物理图像转换为逻辑图像,或者如计算机作图那样从逻辑图像数据得到相应的物理图像数据。此外还应有修改数据(如在树结构中增加或删除一个节点)的程序方法。
三维图像的一种表示方法是把三维阵列看成是由一系列二维图像阵列所组成,从而可以应用二维图像的表示方法;也可以类似四分树的方法,把立方块分解为原边长的二分之一的八个小立方块,递归地用八分树表示三维图像。另一种三维物体的近似表示方法是用广义锥,所谓广义锥是一个由轴、横截面形状和尺寸函数所组成的三元组。例如一个圆盘形以与轴成90°方向运动,且轴是一个水平线段并通过圆盘的中心,而尺寸函数又是一个常数时,就得到一个平放的圆柱体。任何复杂的三维物体都可以用相应的横截面形状沿轴线运动且尺寸大小按照尺寸函数改变所扫出的物体图像来近似地表示。此外,三维物体的边界可以用一组表面表示,其中每个表面可以用表面的斜率表征,从而可以用三维链码表示空间曲面。现代已研究出在二维图像基础上表示三维图像信息的各种方法。
参考书目
A.Rosenfeld and A.C.Kak,Digital Picture Processing, Academic Press, New York,1982.
K.S.Fuand T.L.Kunii(editors),Picture Engineering, Springer-Verlag, Berlin, 1976.
更高一级的图像表示是描述图像中的物体和物体间的关系。这样一种图像常常称为逻辑图像。图像中的物体或组成部分可以用区域或一组几何特性来表征,还可以详细说明组成部分的位置和其他非几何的属性。一般用图表示逻辑图像,图中节点表示物体的组成部分,每个节点用组成部分的有关性质作成的表作为标签,必要时还可以用指针指向低一级水平的图像数据结构(如形成该区域的灰度阵列数据)。节点之间的有向弧用来表示相应组成部分之间的关系,用关系性质作成的表作为弧的标签。例如,图b给出由三个矩形块所组成的图像(图a)的逻辑图像表示。此外,也可以用文法形式表示物体之间的关系(见模式文法)。
为了使各种表示在同一系统中同时存在,就需要有相应的算法把一种表示转换为另一种表示,例如把二维阵列变换为四分树,或从四分树表示变换为二维阵列,以及从物理图像转换为逻辑图像,或者如计算机作图那样从逻辑图像数据得到相应的物理图像数据。此外还应有修改数据(如在树结构中增加或删除一个节点)的程序方法。
三维图像的一种表示方法是把三维阵列看成是由一系列二维图像阵列所组成,从而可以应用二维图像的表示方法;也可以类似四分树的方法,把立方块分解为原边长的二分之一的八个小立方块,递归地用八分树表示三维图像。另一种三维物体的近似表示方法是用广义锥,所谓广义锥是一个由轴、横截面形状和尺寸函数所组成的三元组。例如一个圆盘形以与轴成90°方向运动,且轴是一个水平线段并通过圆盘的中心,而尺寸函数又是一个常数时,就得到一个平放的圆柱体。任何复杂的三维物体都可以用相应的横截面形状沿轴线运动且尺寸大小按照尺寸函数改变所扫出的物体图像来近似地表示。此外,三维物体的边界可以用一组表面表示,其中每个表面可以用表面的斜率表征,从而可以用三维链码表示空间曲面。现代已研究出在二维图像基础上表示三维图像信息的各种方法。
参考书目
A.Rosenfeld and A.C.Kak,Digital Picture Processing, Academic Press, New York,1982.
K.S.Fuand T.L.Kunii(editors),Picture Engineering, Springer-Verlag, Berlin, 1976.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条