1) Probability discernibility matrix
概率差别矩阵
2) probability matrix
概率矩阵
1.
In this paper the method dealing with the distribution of passenger stream into the vehicle and probability matrix of passenger out of the vehicle is discussed.
本文讨论了城市公交车调度问题中的上车乘客流分布和下车概率矩阵的处理方法,建立了基于模拟公共汽车运行的公交车调度问题的数学模型,给出了解法,并对模型的应用进行了讨论。
2.
A k-steps fault pervasion and localization algorithm is put forward,which fractionalizes the fault directional graph and finds the optimal pervasion route or the most suspicion nodes with the fault propagation probability matrix.
对系统故障有向图进行了分片处理,结合故障传播概率矩阵对故障嫌疑节点进行故障扩散模拟寻找最佳扩散路径和最大嫌疑节点。
3.
In the algorithm, every possible motion vector s probability of current macro block is estimated by the previous macro blocks motion vectors, and constitutes the probability matrix whose size is as the same as the search window s.
为了提高运动向量估计算法的速度和精度,提出了一种改进的快速块匹配运动估计算法:依据之前宏块的运动向量,估计当前宏块各可能的运动向量对应的概率值,组成和搜索窗口同样大小的概率矩阵,并根据概率大小限制搜索的次数。
3) differential matrix
差别矩阵
1.
This paper offers a heuristic search algorithm which is relative reduce by differential matrix calculating.
本文给出用差别矩阵计算相对约简的一种启发式搜索算法,能快速约简故障知识库,导出最小决策规则。
2.
This paper point out the common errors of the simplify algorithm of calculating reduced differential matrix in use and provide the correcting way.
差别矩阵约简算法是粗集属性约简的重要方法,简化算法能省去生成、存储差别矩阵的中间环节,减少时空运算,是一种实用方法。
3.
Skowron s differential matrix theory makes the reduce processes of rough set more simple.
Skowron差别矩阵给出了粗集约简的一般方法,但该算法要求生成、存储差别矩阵的中间环节,造成时间和空间上的浪费。
4) discernibility matrix
差别矩阵
1.
Efficient method for computing core based on improved discernibility matrix;
基于修正的差别矩阵的高效求核方法
2.
Reduction tree algorithm based on discernibility matrix;
基于差别矩阵的约简树构造方法
3.
Complete algorithm for attribute reduction based on discernibility matrix;
基于差别矩阵的属性约简完备算法
5) cluster probability matrix
聚概率矩阵
6) Matrix probability
矩阵概率和
补充资料:转移概率矩阵
转移概率矩阵
matrix of transition probabilities
转移概率矩阵【“.枕议of七队d位翻声如城翻;nepex-。江皿‘区.ePo,.oeTe曲Ma邓H”a】 状态集S至多为可数的齐次MaP劝.链(Mark0Vd.in)奴O在时刻:的转移概率(加璐币皿probab正-公)构成的矩阵尸:=!}Pi)(O”,其中 夕。(t)=p{看(t)=jl亡(0)=i},i,j“5.离散时间Ma匹oB链或连续时间正则MaPx伪链的转移概率矩阵i}儿(t)“对任意t>0和i,j“S满足以下条件: p。(‘))”,属p‘,(‘)一‘,即它们是随机矩阵(sto比出tic Inatr认),而对非正则链则有 ,。(亡))0,艺夕。(t)‘l, 夕‘S称这种矩阵为次随机的(sub·stoc】秘tic). 由于齐次Ma琳oB链的基本(CllaP~一K~。ro-poB)性质 ,。(“+‘)一蕙,‘*(“),*,(亡),矩阵族{尸‘:亡)0}形成一个乘法半群(m川tiplicativeseITU一gro叩);如果时间是离散的,这个半群由尸:唯一决定.A,M.3y6KoB撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条