说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 重要性采样概率密度函数
1)  Importance proposal distribution
重要性采样概率密度函数
2)  importance sampling function
重要性采样函数
1.
To solve the important problem in particle filter that how to design the importance sampling function to propagate the particles, a novel particle filter based on observation likelihood importance sampling was proposed.
针对粒子滤波中如何来设计重要性采样函数进行动态粒子传播这个重要问题,提出了一种新的基于观测似然重要性采样的粒子滤波算法,该算法打破了常规粒子滤波先按某一重要性采样函数进行采样,再用观测似然进行粒子权重更新的思路,而是直接根据观测似然进行采样,然后再用先验转移概率进行粒子权重更新。
3)  the importance density function
重要性密度函数
1.
Because the IEKF can acquire a maximum a posteriori(MAP) estimate of the nonlinear system,and the importance density function integrates the latest observation into system state transition density,so the proposal distribution can approximate the posterior distribution reasonably well.
该方法利用迭代扩展卡尔曼滤波的最大后验概率估计产生粒子滤波的重要性密度函数,使重要性密度函数能够融入最新观测信息的同时,更加符合真实状态的后验概率分布。
4)  importance density function
重要性密度函数
1.
The main idea uses the system state transition matrix and the error covariance matrix which are gained from the IEKF and the sequential fusion to construct the importance density function of the particle filter.
针对粒子滤波中得到优化的重要性密度函数比较困难的问题,将迭代扩展卡尔曼滤波和序贯融合与粒子滤波相结合,应于雷达和红外多传感器目标融合跟踪。
2.
The choice of importance density function is very important for the particle filtering.
重要性密度函数的选择对粒子滤波至关重要,围绕重要性密度函数的选择,已提出许多改进粒子滤波算法,典型的有扩展卡尔曼粒子滤波(EPF),不敏卡尔曼粒子滤波(UPF)、辅助粒子滤波(APF)及正则化粒子滤波(RPF)。
3.
The new algorithm uses the quadrature Kalman filter(QKF) to generate the importance density function,and linearizes the nonlinear functions using the statistical linear regression method through a set of Gaussian-Hermite quadrature points.
针对非线性/非高斯系统的状态估计问题,提出一种采用求积分卡尔曼滤波(QKF)算法来产生重要性密度函数的粒子滤波新算法——PF-QKF算法。
5)  directional importance sampling density function
方向重要抽样密度函数
6)  probability density function
概率密度函数
1.
Calculation of probability density function based on Flamelet theory;
基于Flamelet理论的概率密度函数的数值计算
2.
Study on the probability density function of drifting direction after ship s anchor dragging;
走锚船漂流方向概率密度函数的研究
3.
Low complexity blind equalization algorithm based on probability density function;
基于概率密度函数的低复杂度盲均衡算法
补充资料:概率分布的密度


概率分布的密度
density of a probability distribution

  概率分布的密度【山画勿ofa声加b正ty业州恤心.;n月。T:oeT‘,.TooeT,],亦称攀半考枣(pro恤b正tydensity) 与绝对连续概率测度相对应的分布函数(distribU-tionft川ction)的导数. 设X是在”维E切土d空间R”(n)l)中取值的随机向量,F是它的分布函数,并设存在一个非负函数f使得 x一工.F(x,,xZ,…,x。)一J…J,(。:,…,。。)“1…du,对一切实数x;,…,、。成立,则称f是X的修率窜摩(probab皿ity de飞ity),此时对任意BOrel集A cR“有 p万x。A飞=f…ff(。,.·…。_)du一d、. ‘A。任一满足条件 丁…Jf‘xl,一x·,dxl·““一‘的非负可积函数f都是某一随机向量的概率密度. 如果两个取值于R”的分别具有概率密度f和g的随机向量X和Y是独立的,那么随机向量X十Y具有概率密度h,它是f和g的卷积,即h(xl,…,x。)=一丁…丁f(x,一。,,…,x。一u。)。(。,,…,。。)以u,…J、一J…Jf(“,,…,。。)。(x,一,,…,x。一、)汉。,…d。。. 假设X=(戈,…,戈)和Y=(矶,…,气)是分别取值于R”和R用(n,m)l)中且具有概率密度f和夕的随机向量,而z=(戈,…戈,Y.,…,气)是取值于r+川中的随机向量.再若X和y独立,则Z具有概率密度h,称为随机向量X和Y的联合概率密度(joint Pro恤biljty dellsity),此处h(t:,…,t。十。)=f(tl,…,t。)g(t。+1,…,t。*.)·(l)反之,若Z具有满足(l)的概率密度,则X和Y独立. 具有概率密度f的随机向量X的特征函数中可表示为 毋(tl,…,t。)= 一丁…丁。:‘!1二‘~“·’·,f(xl,一x。,dxl·‘·“x二这里,如果职是绝对可积的,则f是有界连续函数,且 f(x:,“·,x。)=二二头二f二卜一‘:1一‘,…’,(。:,…,:。)d才,…d。· (2二)”几或概率密度f和对应的特征函数价还通过下述关系式(Phnd犯rel埠等术(Phncherel汕mtity))相联系:函数厂是可积的,当且仅当!叫’是可积的,此时有 了…歹fZ(x卫,…,、)dx,…dx。 一典丁了…}’,,(。,,…,:。)一‘tl…己t。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条