1) bivariable fractal function
双变量分形函数
1.
A block matching intra-frame video image compression algorithm based on bivariable fractal function space theory has been proposed.
视频图像压缩的分形压缩方法是当今图像压缩编码中的热门话题,通过研究双变量分形函数空间,得出了一些关于双变量分形函数的有用的结果;提出了一种基于双变量分形函数空间理论的帧内分块匹配视频图像压缩算法;给出了算法框图和帧间编码的有效花费函数,形成了一种新的视频图像分块匹配压缩算法,在计算机上实现效果良好。
2) two-variable one-way function
双变量单向函数
1.
A new(t,n) threshold multi-stage secret sharing scheme is proposed,which based on two-variable one-way function.
提出了一个新的多级秘密(t,n)门限多级秘密共享方案,该方案基于双变量单向函数,克服了He和Harn方案的不足。
3) bivariate functional function
双变量功能函数
4) bivariate shrinkage function
双变量收缩函数
1.
Combining bivariate shrinkage function with enhancement of wavelet significant coefficients,a novel method is proposed for removing noise from images with speckle,which allows us to consider the particularity of the model for speckle noise.
在充分考虑斑点噪声模型特殊性的基础上,将双变量收缩函数与小波系数显著性增强相结合,提出一种新的用于SAR图像的斑点抑制算法。
5) two variable one-way function
双变量单向函数
1.
A new multiple secrets sharing scheme,based on the intractability of the discrete logarithm and two variable one-way function and Hermite interpolation polynomial is presented,in which the participants\' shadows remain secret and can be reused,and those multiple secrets can be recovered at the same time.
利用离散对数计算的困难性、双变量单向函数的隐蔽性以及Hermite插值多项式,获得了一个门限可验证多秘密分享方案,具有子秘密可重复使用、子秘密可离线验证、多个主秘密可以同时被重构等特点。
2.
An efficient new verifiable multi-secret sharing scheme based on two variable one-way function and Hermite interpolation polynomial and discrete logarithm problem is presented.
利用双变量单向函数的隐蔽性、离散对数问题的难解性,基于Hermite插值多项式提出了一个新的可验证多秘密共享方案以共享p个主秘密,该方案具有效率高、子秘密可重复使用、多个主秘密能同时被重构、可验证等特点。
6) new discernibility function
变形分明函数
1.
Analysis on new discernibility function and proof about attribute reduction based on granular computing
基于粒计算的变形分明函数分析及属性约简证明
补充资料:极小化方法(强依赖于多个变量的函数的)
极小化方法(强依赖于多个变量的函数的)
lion methods for functions depending strongly on a few variables
则数r称为函数J(x)在x‘G的谷维数(di~ionof the valley)(见[l」). 描述J(x)的下降轨道的微分方程组 d义 嚣一J’(x),‘(0)一‘。,(3)是一个刚性微分方程组(s叮山晚肥爪阁s势记m). 特别地,当J(x)是严格凸的且其He资℃矩阵是正定的(它的本征值是严格正的)时候,不等式(l)与熟知的场翔e矩阵的病态要求: n笼以」(x、 人{J‘IX))=—二戈>l rnln又八x)一致.在这情况下谱条件数与山谷的陡度相同. 坐标方式的下降法(coo攻垃扭te一~d留eent ITrth-ed)(见[ZJ)J(x:,*+:,“‘,x‘一,.*十,,x.,*+,,x‘+1.*,…,x。.*)一塑J(x,,*+:,‘”,x卜1,*,y,x‘+:,*,“’,xo.*), k=0,1,…,(4)不管其简单性和普遍性,仅当山谷的位置处于罕见情况下,即当山谷的方向是沿着坐标轴时才有效. 「2】中提出了方法(4)的一个现代化版本,它包括坐标轴的一个旋转,使得一个轴沿x*一x七一伸展,此后搜索在第(k+l)步开始.这样的一个办法导致一个坐标轴有一种与谷底的一条母线一致的趋向,使在若干情况下能顺利实现带有一维山谷的函数的极小化.这方法对多维山谷是不适用的. 最速下降法(s慨pest des以泊t,m出加吐of)的方案是由差分方程 x*十一x*一h*J{,J诬=J‘(x*)(5)给出的,这里h*由条件 J(‘*、:)一嘿J(‘厂hJ口选取.对严格凸的谷函数,特别对二次函数 J(x)一合X·DX一。·x,(6)由算法(5)构造的序列{x*}几何地收敛于函数的极小值点x’(见「3』): 1 Ix*一x‘11簇eg‘,这里C=常数且 。一典4共手共咎井. k(J"(x’))+l’由于对谷函数,k(J“(x))》1,q“1,从而收敛性在实际上是不存在的. 对简单梯度方案(见阱】);梯度法(脚曲ntme-thod)) x*十,=x*一hJ二,J*十1“J(x*、,),h=常数, (7)类似的情况也能看到.加速其收敛性的基础在于用以前迭代的结果使得谷底更精确.梯度法(7)能够同每一次迭代的比率q=}人}/{J*一」}的计算一起应用(见阱],【51).当它变得稳固地接近于常数值q=1时,按照表达式 h x二,=x。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条