1) Vision road detection
视觉道路检测
2) vision measurement
视觉检测
1.
New self calibration method in computer vision measurement system
一种新的视觉检测系统自标定方法
2.
An algorithm of mass-target image matching for vision measurement in mass chip production was put forward to carry out multi-window self-construction.
针对大批量芯片生产中视觉检测难题,提出了一种基于多窗体结构的多目标匹配算法,实现了多窗体结构的自构建。
3) visual inspection
视觉检测
1.
A Visual Inspection System for On-Iline Measurement;
用于在线测量的视觉检测系统
2.
Error analysis of calibration equipment in visual inspection system for industrial parts;
工业零件视觉检测系统中标定设备的误差分析
3.
The investigation of computer visual inspection in convection belt system;
传送带计算机视觉检测系统的研究
4) vision inspection
视觉检测
1.
Unique world coordiantes based global calibration method for multi-vision inspection system;
多视觉检测系统的世界坐标唯一全局标定方法
2.
Research on the Tube-type Bottle Characteristic Parameters Inspecting System with Vision Inspection;
管制瓶特征参数视觉检测系统的研究
3.
Measurement of floating ball pose by vision inspection technique
基于视觉检测技术的浮球姿态测量
5) visual detection
视觉检测
1.
Computer visual detection system based on LabVIEW for PCBA;
基于LabVIEW的PCBA计算机视觉检测系统
2.
The article introduces systematically the structure, technical parameters, detecting principle, data processing display and system technical characteristics of visual detection system for OCS of electrified railway, illustrates it抯 sophistication and practicality and offers a brand-new and high-tech instrumentality for the detection of OCS of electrified railway.
本文对电气化铁道接触网视觉检测系统的结构、技术指标、检测原理、数据处理显示、系统技术特征进行了介绍,并且阐明了其先进性与实用性,为电气化铁道接触网检测提供了一种全新的高科技手段。
3.
Body three -dimensional visual detection technology is the latest decade developed detecting technology of plain body, which has the characteristics of no touch, high velocity and on line, etc.
车身三维尺寸视觉检测技术是近十几年发展起来的一项白车身尺寸测试技术,具有非接触、速度快、可在线等突出优点,为全面提高车身的制造精度提供了有效的检测手段。
6) Vision Detection
视觉检测
1.
Study on the method of vision detection on penetration status in Laser-MIG hybrid welding;
激光-MIG复合焊熔透状态视觉检测方法的研究
2.
The principal of vision detection and the most contemporary algorithms are introduced.
重点讨论了机器视觉系统在实际工业生产中的应用及工业视觉检测原理、常用图像处理算法等。
3.
Point pattern matching is a new method in vision detection.
点模式匹配是视觉测量中的一种新方法;针对贴片机生产中BGA芯片的图像识别对中问题,系统地介绍了BGA的视觉检测任务,提出了基于点模式匹配的快速定位算法;该算法针对BGA焊球分布特点,对传统点模式匹配算法进行优化,大大减少了运算量;现场实际运行结果表明该算法的速度和精度都能满足实际生产的需要,并具有较强的鲁棒性。
补充资料:明视觉和暗视觉
不同波长的光刺激在两种亮度范围内作用于视觉器官而产生的视觉现象。光刺激的亮度在约3个坎德拉(cd)以上时,主要由人眼锥体细胞获得的视觉称明视觉或锥体细胞视觉;光刺激的亮度约在10-3尼特以下,即在暗适应情况下主要由杆体细胞获得的视觉称暗视觉或杆体细胞视觉。人眼视网膜中央凹内锥体细胞最多,视网膜边缘只有少数锥体细胞掺杂在杆体细胞中。杆体细胞主要分布在视网膜的边缘,中央凹内没有杆体细胞,而偏离中央凹20°时,单位面积上的杆体细胞密度最大。明视觉主要是中央视觉,而暗视觉则是边缘视觉。因此在微光条件下,如想发现发光暗淡的星星,把目标保持在视觉注视中心反而不如以边缘视觉观察时清楚。
在明视觉的情况下,人眼能分辨物体的细节,也能分辨颜色,但对不同波长可见光的感受性不同,因此能量相同的不同色光表现出不同的明亮程度。一般说来黄绿色看着最亮,光谱两端的红色和紫色则暗得多。不同波长的光的这种相对发光效率通常称作光谱相对视亮度函数(简称V(λ)函数)或相对发光效率函数、视见函数等,可用光谱相对视亮度曲线表示(见图 )。V(λ)函数是人们看不同色光时产生同等亮度感觉所需要的能量的倒数,即V(λ)=1/E(λ)。式中:V(λ)为相应波长λ的光谱视亮度函数值;E(λ)为波长λ的单色光能量。目前通用的V(λ)函数主要是K.S.吉布森和E.P.T.廷德尔用步进法与W.科布伦茨和W.B.埃默森用闪烁法测定结果的平均值。1924年为国际照明委员会(简称CIE)所采纳。其峰值在555纳米处。
CIE V(λ) 函数是根据白种人眼的测定材料确定的。后来有好几位学者对不同人种(埃及人、高加索人、中非人等)的V(λ)函数进行过测定。结果表明,非白种人的视亮度函数在短波段比CIE V(λ)低些。中国心理学家和生理学家近年来用闪烁法对V(λ)函数进行了测定,结果表明:①中国人眼的V(λ)函数与CIE V(λ)函数很一致。目前尚无充分证据证明人种学上的差别影响V(λ)函数;②随着年龄的增长,光谱短波一侧的V(λ)函数有降低的趋势,这主要是由于水晶体发黄所致。
近60年来不断有人对CIE V(λ)函数提出异议,比较集中的意见是短波段偏低。1951年D.B.贾德提出对CIE V(λ)函数在短波段的修正值。随着气体放电光源和单色光源的发展,CIE V(λ)函数越来越不能满足需要。中国计量科学研究院和中国科学院心理研究所协作,用异色明度匹配法研究V(λ)函数。实验数据已被国际照明委员会采纳,列入1988年CIE第75号出版物推荐的V(λ)2°视场(简称Vb12(λ))和V(λ)10°视场(简称Vb110(λ))的国际平均值中。
除年龄外,实验条件和采用的研究方法均影响V(λ)函数,如在明视觉条件下,观察大面积表面时,由于黄斑色素的影响不同和杆体细胞参加,V(λ)曲线比2°视野的V(λ)曲线略有变动。
就正常人眼来说,杆体细胞本身并不能产生彩色视觉,它们只产生无彩色的白、灰和黑的视觉,反以在微光条件下,一切物体呈中性色。暗视觉的光谱相对视亮度函数(简称V′(λ)函数)曲线较V(λ)曲线向短波方面偏移如上图。这说明对长波的感受性降低,而对短波的感受性提高了。这种现象称为普尔金耶现象。
CIE V′(λ)函数是1951年 CIE根据B.H.克劳福德用直接比较法和G.沃尔德用阈限法所得结果推荐使用的。其峰值在507纳米处。这条曲线代表30岁以下经过完全暗适应的观察者,在刺激物离开中央凹超过5°时杆体细胞的平均光谱感受性。V′(λ)曲线的形状主要决定于杆体细胞的感光化学物质对不同波长的吸收特性。视紫红质的吸收曲线与V′(λ)曲线很相似。近年来中国心理学家用直接比较法测定了中国人的V′(λ)结果表明:①V′(λ)曲线形状与CIE V′(λ)曲线形状比较接近,峰值稍向长波位移;②年龄对函数也有影响。
人眼对于亮度约为 10-3~3尼特的光刺激的感觉叫做间视觉。在间视觉中杆体细胞和锥体细胞同时活动并相互作用,它们的相应关系不断变化,致使人们对颜色判断很不可靠。
在明视觉的情况下,人眼能分辨物体的细节,也能分辨颜色,但对不同波长可见光的感受性不同,因此能量相同的不同色光表现出不同的明亮程度。一般说来黄绿色看着最亮,光谱两端的红色和紫色则暗得多。不同波长的光的这种相对发光效率通常称作光谱相对视亮度函数(简称V(λ)函数)或相对发光效率函数、视见函数等,可用光谱相对视亮度曲线表示(见图 )。V(λ)函数是人们看不同色光时产生同等亮度感觉所需要的能量的倒数,即V(λ)=1/E(λ)。式中:V(λ)为相应波长λ的光谱视亮度函数值;E(λ)为波长λ的单色光能量。目前通用的V(λ)函数主要是K.S.吉布森和E.P.T.廷德尔用步进法与W.科布伦茨和W.B.埃默森用闪烁法测定结果的平均值。1924年为国际照明委员会(简称CIE)所采纳。其峰值在555纳米处。
CIE V(λ) 函数是根据白种人眼的测定材料确定的。后来有好几位学者对不同人种(埃及人、高加索人、中非人等)的V(λ)函数进行过测定。结果表明,非白种人的视亮度函数在短波段比CIE V(λ)低些。中国心理学家和生理学家近年来用闪烁法对V(λ)函数进行了测定,结果表明:①中国人眼的V(λ)函数与CIE V(λ)函数很一致。目前尚无充分证据证明人种学上的差别影响V(λ)函数;②随着年龄的增长,光谱短波一侧的V(λ)函数有降低的趋势,这主要是由于水晶体发黄所致。
近60年来不断有人对CIE V(λ)函数提出异议,比较集中的意见是短波段偏低。1951年D.B.贾德提出对CIE V(λ)函数在短波段的修正值。随着气体放电光源和单色光源的发展,CIE V(λ)函数越来越不能满足需要。中国计量科学研究院和中国科学院心理研究所协作,用异色明度匹配法研究V(λ)函数。实验数据已被国际照明委员会采纳,列入1988年CIE第75号出版物推荐的V(λ)2°视场(简称Vb12(λ))和V(λ)10°视场(简称Vb110(λ))的国际平均值中。
除年龄外,实验条件和采用的研究方法均影响V(λ)函数,如在明视觉条件下,观察大面积表面时,由于黄斑色素的影响不同和杆体细胞参加,V(λ)曲线比2°视野的V(λ)曲线略有变动。
就正常人眼来说,杆体细胞本身并不能产生彩色视觉,它们只产生无彩色的白、灰和黑的视觉,反以在微光条件下,一切物体呈中性色。暗视觉的光谱相对视亮度函数(简称V′(λ)函数)曲线较V(λ)曲线向短波方面偏移如上图。这说明对长波的感受性降低,而对短波的感受性提高了。这种现象称为普尔金耶现象。
CIE V′(λ)函数是1951年 CIE根据B.H.克劳福德用直接比较法和G.沃尔德用阈限法所得结果推荐使用的。其峰值在507纳米处。这条曲线代表30岁以下经过完全暗适应的观察者,在刺激物离开中央凹超过5°时杆体细胞的平均光谱感受性。V′(λ)曲线的形状主要决定于杆体细胞的感光化学物质对不同波长的吸收特性。视紫红质的吸收曲线与V′(λ)曲线很相似。近年来中国心理学家用直接比较法测定了中国人的V′(λ)结果表明:①V′(λ)曲线形状与CIE V′(λ)曲线形状比较接近,峰值稍向长波位移;②年龄对函数也有影响。
人眼对于亮度约为 10-3~3尼特的光刺激的感觉叫做间视觉。在间视觉中杆体细胞和锥体细胞同时活动并相互作用,它们的相应关系不断变化,致使人们对颜色判断很不可靠。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条