1) subdecomposable
次可分解
1.
T is subdecomposable if and only if is subdecomposable.
本文中,我们证明了算子T具有属性(β)当且仅当其广义Aluthge变换具有(β)属性,T具有(β)ε属性当且仅当具有(β)ε属性,T是次可分解算子当且仅当是次可分解算子。
2) Subdecomposability
次可分解性
3) subdecomposable operator
次可分解算子
1.
On invariant subspaces of subdecomposable operators;
关于次可分解算子的不变子空间(英文)
2.
In this paper,we show that the lattice of invariant subspaces for a class of subdecomposable operators is rich.
证明了一类次可分解算子的不变子空间格是丰富的,并举例说明存在Hilbert空间上的有界线性算子T,它有无穷多个不变子空间,但是它的不变子空间格Lat(T)不丰富。
4) Decomposable Hierarchical Model
可分解层次模型
5) decomposable quadratic programming
可分解的二次规划
6) sequentiallysubdecomposable operator
序列次可分解算子
补充资料:次切线和次法线
次切线和次法线
subtangent and subnormal
次切线和次法线【,奴。嗯翻ta己,由.刃nllal;no八Kaca-,一eJ,,,Ra”H”0八nOPM幼L」 有向线段QT和QN,它们是某一曲线在点M处的切线(tan罗nt line)段MT和法线(norlml)段对N在、轴上的投影(见图). 少l, 口‘吧不‘一一-一-一号-份甲间二 TO柑 如果达一曲线是函数y二‘j(x)的图形,则次切线和次法线的长度分别等于 。二__f(x)。、了_了丫、,、,,,_、 心T“一分书丁,QN=f(x)f’(x), 一f’(x)’乙一其中x是点M的横坐标.如果这一曲线由参数式给出: x=甲(t),夕=沙(t),则 。7’二一竺红纽自兰立。、,_竺立丝三旦 “一少‘(t)’“一少‘(t)其中t是确定曲线上点M的参数值.Bc3一3【补注】 IAI]Berger,M二Geo瑰t仃,2,SP力幻gcr.1989(中译 本二M.贝尔热,儿何,第一一五卷,科学出版社, 1987一1991). 工AZ j Go掀5 Te认eira,F,Tralt己des oourbes,l一3. Chelsea.犯Print,1971. 〔A3 1 Lamb,日二知6mtes,Inalc时e以us,Cambnd罗.U:uv. Press,1924.杜小杨译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条